Abstract:Cloud platforms today have been deploying hardware accelerators like neural processing units (NPUs) for powering machine learning (ML) inference services. To maximize the resource utilization while ensuring reasonable quality of service, a natural approach is to virtualize NPUs for efficient resource sharing for multi-tenant ML services. However, virtualizing NPUs for modern cloud platforms is not easy. This is not only due to the lack of system abstraction support for NPU hardware, but also due to the lack of architectural and ISA support for enabling fine-grained dynamic operator scheduling for virtualized NPUs. We present TCloud, a holistic NPU virtualization framework. We investigate virtualization techniques for NPUs across the entire software and hardware stack. TCloud consists of (1) a flexible NPU abstraction called vNPU, which enables fine-grained virtualization of the heterogeneous compute units in a physical NPU (pNPU); (2) a vNPU resource allocator that enables pay-as-you-go computing model and flexible vNPU-to-pNPU mappings for improved resource utilization and cost-effectiveness; (3) an ISA extension of modern NPU architecture for facilitating fine-grained tensor operator scheduling for multiple vNPUs. We implement TCloud based on a production-level NPU simulator. Our experiments show that TCloud improves the throughput of ML inference services by up to 1.4$\times$ and reduces the tail latency by up to 4.6$\times$, while improving the NPU utilization by 1.2$\times$ on average, compared to state-of-the-art NPU sharing approaches.
Abstract:In response to innovations in machine learning (ML) models, production workloads changed radically and rapidly. TPU v4 is the fifth Google domain specific architecture (DSA) and its third supercomputer for such ML models. Optical circuit switches (OCSes) dynamically reconfigure its interconnect topology to improve scale, availability, utilization, modularity, deployment, security, power, and performance; users can pick a twisted 3D torus topology if desired. Much cheaper, lower power, and faster than Infiniband, OCSes and underlying optical components are <5% of system cost and <3% of system power. Each TPU v4 includes SparseCores, dataflow processors that accelerate models that rely on embeddings by 5x-7x yet use only 5% of die area and power. Deployed since 2020, TPU v4 outperforms TPU v3 by 2.1x and improves performance/Watt by 2.7x. The TPU v4 supercomputer is 4x larger at 4096 chips and thus ~10x faster overall, which along with OCS flexibility helps large language models. For similar sized systems, it is ~4.3x-4.5x faster than the Graphcore IPU Bow and is 1.2x-1.7x faster and uses 1.3x-1.9x less power than the Nvidia A100. TPU v4s inside the energy-optimized warehouse scale computers of Google Cloud use ~3x less energy and produce ~20x less CO2e than contemporary DSAs in a typical on-premise data center.