Abstract:A connectional brain template (CBT) is a holistic representation of a population of multi-view brain connectivity graphs, encoding shared patterns and normalizing typical variations across individuals. The federation of CBT learning allows for an inclusive estimation of the representative center of multi-domain brain connectivity datasets in a fully data-preserving manner. However, existing methods overlook the non-independent and identically distributed (non-IDD) issue stemming from multidomain brain connectivity heterogeneity, in which data domains are drawn from different hospitals and imaging modalities. To overcome this limitation, we unprecedentedly propose a metadata-driven federated learning framework, called MetaFedCBT, for cross-domain CBT learning. Given the data drawn from a specific domain (i.e., hospital), our model aims to learn metadata in a fully supervised manner by introducing a local client-based regressor network. The generated meta-data is forced to meet the statistical attributes (e.g., mean) of other domains, while preserving their privacy. Our supervised meta-data generation approach boosts the unsupervised learning of a more centered, representative, and holistic CBT of a particular brain state across diverse domains. As the federated learning progresses over multiple rounds, the learned metadata and associated generated connectivities are continuously updated to better approximate the target domain information. MetaFedCBT overcomes the non-IID issue of existing methods by generating informative brain connectivities for privacy-preserving holistic CBT learning with guidance using metadata. Extensive experiments on multi-view morphological brain networks of normal and patient subjects demonstrate that our MetaFedCBT is a superior federated CBT learning model and significantly advances the state-of-the-art performance.
Abstract:Human de-occlusion, which aims to infer the appearance of invisible human parts from an occluded image, has great value in many human-related tasks, such as person re-id, and intention inference. To address this task, this paper proposes a dynamic mask-aware transformer (DMAT), which dynamically augments information from human regions and weakens that from occlusion. First, to enhance token representation, we design an expanded convolution head with enlarged kernels, which captures more local valid context and mitigates the influence of surrounding occlusion. To concentrate on the visible human parts, we propose a novel dynamic multi-head human-mask guided attention mechanism through integrating multiple masks, which can prevent the de-occluded regions from assimilating to the background. Besides, a region upsampling strategy is utilized to alleviate the impact of occlusion on interpolated images. During model learning, an amodal loss is developed to further emphasize the recovery effect of human regions, which also refines the model's convergence. Extensive experiments on the AHP dataset demonstrate its superior performance compared to recent state-of-the-art methods.
Abstract:Speech emotion recognition (SER) performance deteriorates significantly in the presence of noise, making it challenging to achieve competitive performance in noisy conditions. To this end, we propose a multi-level knowledge distillation (MLKD) method, which aims to transfer the knowledge from a teacher model trained on clean speech to a simpler student model trained on noisy speech. Specifically, we use clean speech features extracted by the wav2vec-2.0 as the learning goal and train the distil wav2vec-2.0 to approximate the feature extraction ability of the original wav2vec-2.0 under noisy conditions. Furthermore, we leverage the multi-level knowledge of the original wav2vec-2.0 to supervise the single-level output of the distil wav2vec-2.0. We evaluate the effectiveness of our proposed method by conducting extensive experiments using five types of noise-contaminated speech on the IEMOCAP dataset, which show promising results compared to state-of-the-art models.
Abstract:Most open-domain dialogue systems suffer from forgetting important information, especially in a long-term conversation. Existing works usually train the specific retriever or summarizer to obtain key information from the past, which is time-consuming and highly depends on the quality of labeled data. To alleviate this problem, we propose to recursively generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability. Specifically, our method first stimulates LLMs to memorize small dialogue contexts and then recursively produce new memory using previous memory and following contexts. Finally, the LLM can easily generate a highly consistent response with the help of the latest memory. We evaluate our method using ChatGPT and text-davinci-003, and the experiments on the widely-used public dataset show that our method can generate more consistent responses in a long-context conversation. Notably, our method is a potential solution to enable the LLM to model the extremely long context. Code and scripts will be released later.
Abstract:Zero-shot transfer learning for Dialogue State Tracking (DST) helps to handle a variety of task-oriented dialogue domains without the cost of collecting in-domain data. Existing works mainly study common data- or model-level augmentation methods to enhance the generalization but fail to effectively decouple the semantics of samples, limiting the zero-shot performance of DST. In this paper, we present a simple and effective "divide, conquer and combine" solution, which explicitly disentangles the semantics of seen data, and leverages the performance and robustness with the mixture-of-experts mechanism. Specifically, we divide the seen data into semantically independent subsets and train corresponding experts, the newly unseen samples are mapped and inferred with mixture-of-experts with our designed ensemble inference. Extensive experiments on MultiWOZ2.1 upon the T5-Adapter show our schema significantly and consistently improves the zero-shot performance, achieving the SOTA on settings without external knowledge, with only 10M trainable parameters1.