Abstract:In recent years, a variety of contrastive learning based unsupervised visual representation learning methods have been designed and achieved great success in many visual tasks. Generally, these methods can be roughly classified into four categories: (1) standard contrastive methods with an InfoNCE like loss, such as MoCo and SimCLR; (2) non-contrastive methods with only positive pairs, such as BYOL and SimSiam; (3) whitening regularization based methods, such as W-MSE and VICReg; and (4) consistency regularization based methods, such as CO2. In this study, we present a new unified contrastive learning representation framework (named UniCLR) suitable for all the above four kinds of methods from a novel perspective of basic affinity matrix. Moreover, three variants, i.e., SimAffinity, SimWhitening and SimTrace, are presented based on UniCLR. In addition, a simple symmetric loss, as a new consistency regularization term, is proposed based on this framework. By symmetrizing the affinity matrix, we can effectively accelerate the convergence of the training process. Extensive experiments have been conducted to show that (1) the proposed UniCLR framework can achieve superior results on par with and even be better than the state of the art, (2) the proposed symmetric loss can significantly accelerate the convergence of models, and (3) SimTrace can avoid the mode collapse problem by maximizing the trace of a whitened affinity matrix without relying on asymmetry designs or stop-gradients.
Abstract:Graph Neural Networks (GNNs) is an architecture for structural data, and has been adopted in a mass of tasks and achieved fabulous results, such as link prediction, node classification, graph classification and so on. Generally, for a certain node in a given graph, a traditional GNN layer can be regarded as an aggregation from one-hop neighbors, thus a set of stacked layers are able to fetch and update node status within multi-hops. For nodes with sparse connectivity, it is difficult to obtain enough information through a single GNN layer as not only there are only few nodes directly connected to them but also can not propagate the high-order neighbor information. However, as the number of layer increases, the GNN model is prone to over-smooth for nodes with the dense connectivity, which resulting in the decrease of accuracy. To tackle this issue, in this thesis, we define a novel framework that allows the normal GNN model to accommodate more layers. Specifically, a node-degree based gate is employed to adjust weight of layers dynamically, that try to enhance the information aggregation ability and reduce the probability of over-smoothing. Experimental results show that our proposed model can effectively increase the model depth and perform well on several datasets.
Abstract:Few-shot learning, especially few-shot image classification, has received increasing attention and witnessed significant advances in recent years. Some recent studies implicitly show that many generic techniques or ``tricks'', such as data augmentation, pre-training, knowledge distillation, and self-supervision, may greatly boost the performance of a few-shot learning method. Moreover, different works may employ different software platforms, different training schedules, different backbone architectures and even different input image sizes, making fair comparisons difficult and practitioners struggle with reproducibility. To address these situations, we propose a comprehensive library for few-shot learning (LibFewShot) by re-implementing seventeen state-of-the-art few-shot learning methods in a unified framework with the same single codebase in PyTorch. Furthermore, based on LibFewShot, we provide comprehensive evaluations on multiple benchmark datasets with multiple backbone architectures to evaluate common pitfalls and effects of different training tricks. In addition, given the recent doubts on the necessity of meta- or episodic-training mechanism, our evaluation results show that such kind of mechanism is still necessary especially when combined with pre-training. We hope our work can not only lower the barriers for beginners to work on few-shot learning but also remove the effects of the nontrivial tricks to facilitate intrinsic research on few-shot learning. The source code is available from https://github.com/RL-VIG/LibFewShot.
Abstract:Contrastive self-supervised learning (SSL) has achieved great success in unsupervised visual representation learning by maximizing the similarity between two augmented views of the same image (positive pairs) and simultaneously contrasting other different images (negative pairs). However, this type of methods, such as SimCLR and MoCo, relies heavily on a large number of negative pairs and thus requires either large batches or memory banks. In contrast, some recent non-contrastive SSL methods, such as BYOL and SimSiam, attempt to discard negative pairs by introducing asymmetry and show remarkable performance. Unfortunately, to avoid collapsed solutions caused by not using negative pairs, these methods require sophisticated asymmetry designs. In this paper, we argue that negative pairs are still necessary but one is sufficient, i.e., triplet is all you need. A simple triplet-based loss can achieve surprisingly good performance without requiring large batches or asymmetry. Moreover, we observe that unsupervised visual representation learning can gain significantly from randomness. Based on this observation, we propose a simple plug-in RandOm MApping (ROMA) strategy by randomly mapping samples into other spaces and enforcing these randomly projected samples to satisfy the same correlation requirement. The proposed ROMA strategy not only achieves the state-of-the-art performance in conjunction with the triplet-based loss, but also can further effectively boost other SSL methods.
Abstract:Accents mismatching is a critical problem for end-to-end ASR. This paper aims to address this problem by building an accent-robust RNN-T system with domain adversarial training (DAT). We unveil the magic behind DAT and provide, for the first time, a theoretical guarantee that DAT learns accent-invariant representations. We also prove that performing the gradient reversal in DAT is equivalent to minimizing the Jensen-Shannon divergence between domain output distributions. Motivated by the proof of equivalence, we introduce reDAT, a novel technique based on DAT, which relabels data using either unsupervised clustering or soft labels. Experiments on 23K hours of multi-accent data show that DAT achieves competitive results over accent-specific baselines on both native and non-native English accents but up to 13% relative WER reduction on unseen accents; our reDAT yields further improvements over DAT by 3% and 8% relatively on non-native accents of American and British English.
Abstract:Non-parallel many-to-many voice conversion, as well as zero-shot voice conversion, remain under-explored areas. Deep style transfer algorithms, such as generative adversarial networks (GAN) and conditional variational autoencoder (CVAE), are being applied as new solutions in this field. However, GAN training is sophisticated and difficult, and there is no strong evidence that its generated speech is of good perceptual quality. On the other hand, CVAE training is simple but does not come with the distribution-matching property of a GAN. In this paper, we propose a new style transfer scheme that involves only an autoencoder with a carefully designed bottleneck. We formally show that this scheme can achieve distribution-matching style transfer by training only on a self-reconstruction loss. Based on this scheme, we proposed AUTOVC, which achieves state-of-the-art results in many-to-many voice conversion with non-parallel data, and which is the first to perform zero-shot voice conversion.
Abstract:Connectionist temporal classification (CTC) training criterion provides an alternative acoustic model (AM) training strategy for automatic speech recognition in an end-to-end fashion. Although CTC criterion benefits acoustic modeling without needs of time-aligned phonetics transcription, it remains in need of efforts of tweaking to convergence, especially in the resource-constrained scenario. In this paper, we proposed to improve CTC training by incorporating acoustic landmarks. We tailored a new set of acoustic landmarks to help CTC training converge more quickly while also reducing recognition error rates. We leveraged new target label sequences mixed with both phone and manner changes to guide CTC training. Experiments on TIMIT demonstrated that CTC based acoustic models converge faster and smoother significantly when they are augmented by acoustic landmarks. The models pretrained with mixed target labels can be finetuned furthermore, which reduced phone error rate by 8.72% on TIMIT. The consistent performance gain is also observed on reduced TIMIT and WSJ as well, in which case, we are the first to succeed in testing the effectiveness of acoustic landmark theory on mid-sized ASR tasks.
Abstract:Furui first demonstrated that the identity of both consonant and vowel can be perceived from the C-V transition; later, Stevens proposed that acoustic landmarks are the primary cues for speech perception, and that steady-state regions are secondary or supplemental. Acoustic landmarks are perceptually salient, even in a language one doesn't speak, and it has been demonstrated that non-speakers of the language can identify features such as the primary articulator of the landmark. These factors suggest a strategy for developing language-independent automatic speech recognition: landmarks can potentially be learned once from a suitably labeled corpus and rapidly applied to many other languages. This paper proposes enhancing the cross-lingual portability of a neural network by using landmarks as the secondary task in multi-task learning (MTL). The network is trained in a well-resourced source language with both phone and landmark labels (English), then adapted to an under-resourced target language with only word labels (Iban). Landmark-tasked MTL reduces source-language phone error rate by 2.9% relative, and reduces target-language word error rate by 1.9%-5.9% depending on the amount of target-language training data. These results suggest that landmark-tasked MTL causes the DNN to learn hidden-node features that are useful for cross-lingual adaptation.
Abstract:Multi-channel speech enhancement with ad-hoc sensors has been a challenging task. Speech model guided beamforming algorithms are able to recover natural sounding speech, but the speech models tend to be oversimplified or the inference would otherwise be too complicated. On the other hand, deep learning based enhancement approaches are able to learn complicated speech distributions and perform efficient inference, but they are unable to deal with variable number of input channels. Also, deep learning approaches introduce a lot of errors, particularly in the presence of unseen noise types and settings. We have therefore proposed an enhancement framework called DEEPBEAM, which combines the two complementary classes of algorithms. DEEPBEAM introduces a beamforming filter to produce natural sounding speech, but the filter coefficients are determined with the help of a monaural speech enhancement neural network. Experiments on synthetic and real-world data show that DEEPBEAM is able to produce clean, dry and natural sounding speech, and is robust against unseen noise.
Abstract:The performance of automatic speech recognition systems degrades with increasing mismatch between the training and testing scenarios. Differences in speaker accents are a significant source of such mismatch. The traditional approach to deal with multiple accents involves pooling data from several accents during training and building a single model in multi-task fashion, where tasks correspond to individual accents. In this paper, we explore an alternate model where we jointly learn an accent classifier and a multi-task acoustic model. Experiments on the American English Wall Street Journal and British English Cambridge corpora demonstrate that our joint model outperforms the strong multi-task acoustic model baseline. We obtain a 5.94% relative improvement in word error rate on British English, and 9.47% relative improvement on American English. This illustrates that jointly modeling with accent information improves acoustic model performance.