Department of Computing, Imperial College London, London UK, SW7 2AZ
Abstract:Trajectory anomaly detection, aiming to estimate the anomaly risk of trajectories given the Source-Destination (SD) pairs, has become a critical problem for many real-world applications. Existing solutions directly train a generative model for observed trajectories and calculate the conditional generative probability $P({T}|{C})$ as the anomaly risk, where ${T}$ and ${C}$ represent the trajectory and SD pair respectively. However, we argue that the observed trajectories are confounded by road network preference which is a common cause of both SD distribution and trajectories. Existing methods ignore this issue limiting their generalization ability on out-of-distribution trajectories. In this paper, we define the debiased trajectory anomaly detection problem and propose a causal implicit generative model, namely CausalTAD, to solve it. CausalTAD adopts do-calculus to eliminate the confounding bias of road network preference and estimates $P({T}|do({C}))$ as the anomaly criterion. Extensive experiments show that CausalTAD can not only achieve superior performance on trained trajectories but also generally improve the performance of out-of-distribution data, with improvements of $2.1\% \sim 5.7\%$ and $10.6\% \sim 32.7\%$ respectively.
Abstract:Flight trajectory data plays a vital role in the traffic management community, especially for downstream tasks such as trajectory prediction, flight recognition, and anomaly detection. Existing works often utilize handcrafted features and design models for different tasks individually, which heavily rely on domain expertise and are hard to extend. We argue that different flight analysis tasks share the same useful features of the trajectory. Jointly learning a unified representation for flight trajectories could be beneficial for improving the performance of various tasks. However, flight trajectory representation learning (TRL) faces two primary challenges, \ie unbalanced behavior density and 3D spatial continuity, which disable recent general TRL methods. In this paper, we propose Flight2Vec , a flight-specific representation learning method to address these challenges. Specifically, a behavior-adaptive patching mechanism is used to inspire the learned representation to pay more attention to behavior-dense segments. Moreover, we introduce a motion trend learning technique that guides the model to memorize not only the precise locations, but also the motion trend to generate better representations. Extensive experimental results demonstrate that Flight2Vec significantly improves performance in downstream tasks such as flight trajectory prediction, flight recognition, and anomaly detection.
Abstract:Contrastive Language-Image Pretraining (CLIP) has been widely used in vision tasks. Notably, CLIP has demonstrated promising performance in few-shot learning (FSL). However, existing CLIP-based methods in training-free FSL (i.e., without the requirement of additional training) mainly learn different modalities independently, leading to two essential issues: 1) severe anomalous match in image modality; 2) varying quality of generated text prompts. To address these issues, we build a mutual guidance mechanism, that introduces an Image-Guided-Text (IGT) component to rectify varying quality of text prompts through image representations, and a Text-Guided-Image (TGI) component to mitigate the anomalous match of image modality through text representations. By integrating IGT and TGI, we adopt a perspective of Text-Image Mutual guidance Optimization, proposing TIMO. Extensive experiments show that TIMO significantly outperforms the state-of-the-art (SOTA) training-free method. Additionally, by exploring the extent of mutual guidance, we propose an enhanced variant, TIMO-S, which even surpasses the best training-required methods by 0.33% with approximately 100 times less time cost. Our code is available at https://github.com/lyymuwu/TIMO.
Abstract:Recent advancements in vision-language pre-training via contrastive learning have significantly improved performance across computer vision tasks. However, in the medical domain, obtaining multimodal data is often costly and challenging due to privacy, sensitivity, and annotation complexity. To mitigate data scarcity while boosting model performance, we introduce \textbf{Uni-Mlip}, a unified self-supervision framework specifically designed to enhance medical vision-language pre-training. Uni-Mlip seamlessly integrates cross-modality, uni-modality, and fused-modality self-supervision techniques at the data-level and the feature-level. Additionally, Uni-Mlip tailors uni-modal image self-supervision to accommodate the unique characteristics of medical images. Our experiments across datasets of varying scales demonstrate that Uni-Mlip significantly surpasses current state-of-the-art methods in three key downstream tasks: image-text retrieval, image classification, and visual question answering (VQA).
Abstract:Recent advancements in Simultaneous Localization and Mapping (SLAM) have increasingly highlighted the robustness of LiDAR-based techniques. At the same time, Neural Radiance Fields (NeRF) have introduced new possibilities for 3D scene reconstruction, exemplified by SLAM systems. Among these, NeRF-LOAM has shown notable performance in NeRF-based SLAM applications. However, despite its strengths, these systems often encounter difficulties in dynamic outdoor environments due to their inherent static assumptions. To address these limitations, this paper proposes a novel method designed to improve reconstruction in highly dynamic outdoor scenes. Based on NeRF-LOAM, the proposed approach consists of two primary components. First, we separate the scene into static background and dynamic foreground. By identifying and excluding dynamic elements from the mapping process, this segmentation enables the creation of a dense 3D map that accurately represents the static background only. The second component extends the octree structure to support multi-resolution representation. This extension not only enhances reconstruction quality but also aids in the removal of dynamic objects identified by the first module. Additionally, Fourier feature encoding is applied to the sampled points, capturing high-frequency information and leading to more complete reconstruction results. Evaluations on various datasets demonstrate that our method achieves more competitive results compared to current state-of-the-art approaches.
Abstract:3D Gaussian Splatting (3DGS) has emerged as a prominent technique with the potential to become a mainstream method for 3D representations. It can effectively transform multi-view images into explicit 3D Gaussian representations through efficient training, and achieve real-time rendering of novel views. This survey aims to analyze existing 3DGS-related works from multiple intersecting perspectives, including related tasks, technologies, challenges, and opportunities. The primary objective is to provide newcomers with a rapid understanding of the field and to assist researchers in methodically organizing existing technologies and challenges. Specifically, we delve into the optimization, application, and extension of 3DGS, categorizing them based on their focuses or motivations. Additionally, we summarize and classify nine types of technical modules and corresponding improvements identified in existing works. Based on these analyses, we further examine the common challenges and technologies across various tasks, proposing potential research opportunities.
Abstract:Root Cause Analysis (RCA) aims at identifying the underlying causes of system faults by uncovering and analyzing the causal structure from complex systems. It has been widely used in many application domains. Reliable diagnostic conclusions are of great importance in mitigating system failures and financial losses. However, previous studies implicitly assume a full observation of the system, which neglect the effect of partial observation (i.e., missing nodes and latent malfunction). As a result, they fail in deriving reliable RCA results. In this paper, we unveil the issues of unobserved confounders and heterogeneity in partial observation and come up with a new problem of root cause analysis with partially observed data. To achieve this, we propose PORCA, a novel RCA framework which can explore reliable root causes under both unobserved confounders and unobserved heterogeneity. PORCA leverages magnified score-based causal discovery to efficiently optimize acyclic directed mixed graph under unobserved confounders. In addition, we also develop a heterogeneity-aware scheduling strategy to provide adaptive sample weights. Extensive experimental results on one synthetic and two real-world datasets demonstrate the effectiveness and superiority of the proposed framework.
Abstract:The rapid evolution of large language models (LLMs) holds promise for reforming the methodology of spatio-temporal data mining. However, current works for evaluating the spatio-temporal understanding capability of LLMs are somewhat limited and biased. These works either fail to incorporate the latest language models or only focus on assessing the memorized spatio-temporal knowledge. To address this gap, this paper dissects LLMs' capability of spatio-temporal data into four distinct dimensions: knowledge comprehension, spatio-temporal reasoning, accurate computation, and downstream applications. We curate several natural language question-answer tasks for each category and build the benchmark dataset, namely STBench, containing 13 distinct tasks and over 60,000 QA pairs. Moreover, we have assessed the capabilities of 13 LLMs, such as GPT-4o, Gemma and Mistral. Experimental results reveal that existing LLMs show remarkable performance on knowledge comprehension and spatio-temporal reasoning tasks, with potential for further enhancement on other tasks through in-context learning, chain-of-though prompting, and fine-tuning. The code and datasets of STBench are released on https://github.com/LwbXc/STBench.
Abstract:In online advertising, marketing mix modeling (MMM) is employed to predict the gross merchandise volume (GMV) of brand shops and help decision-makers to adjust the budget allocation of various advertising channels. Traditional MMM methods leveraging regression techniques can fail in handling the complexity of marketing. Although some efforts try to encode the causal structures for better prediction, they have the strict restriction that causal structures are prior-known and unchangeable. In this paper, we define a new causal MMM problem that automatically discovers the interpretable causal structures from data and yields better GMV predictions. To achieve causal MMM, two essential challenges should be addressed: (1) Causal Heterogeneity. The causal structures of different kinds of shops vary a lot. (2) Marketing Response Patterns. Various marketing response patterns i.e., carryover effect and shape effect, have been validated in practice. We argue that causal MMM needs dynamically discover specific causal structures for different shops and the predictions should comply with the prior known marketing response patterns. Thus, we propose CausalMMM that integrates Granger causality in a variational inference framework to measure the causal relationships between different channels and predict the GMV with the regularization of both temporal and saturation marketing response patterns. Extensive experiments show that CausalMMM can not only achieve superior performance of causal structure learning on synthetic datasets with improvements of 5.7%\sim 7.1%, but also enhance the GMV prediction results on a representative E-commerce platform.
Abstract:The burgeoning field of text-based video generation (T2V) has reignited significant interest in the research of controllable video editing. Although pre-trained T2V-based editing models have achieved efficient editing capabilities, current works are still plagued by two major challenges. Firstly, the inherent limitations of T2V models lead to content inconsistencies and motion discontinuities between frames. Secondly, the notorious issue of over-editing significantly disrupts areas that are intended to remain unaltered. To address these challenges, our work aims to explore a robust video-based editing paradigm based on score distillation. Specifically, we propose an Adaptive Sliding Score Distillation strategy, which not only enhances the stability of T2V supervision but also incorporates both global and local video guidance to mitigate the impact of generation errors. Additionally, we modify the self-attention layers during the editing process to further preserve the key features of the original video. Extensive experiments demonstrate that these strategies enable us to effectively address the aforementioned challenges, achieving superior editing performance compared to existing state-of-the-art methods.