Abstract:Health, Safety, and Environment (HSE) compliance assessment demands dynamic real-time decision-making under complicated regulations and complex human-machine-environment interactions. While large language models (LLMs) hold significant potential for decision intelligence and contextual dialogue, their capacity for domain-specific knowledge in HSE and structured legal reasoning remains underexplored. We introduce HSE-Bench, the first benchmark dataset designed to evaluate the HSE compliance assessment capabilities of LLM. HSE-Bench comprises over 1,000 manually curated questions drawn from regulations, court cases, safety exams, and fieldwork videos, and integrates a reasoning flow based on Issue spotting, rule Recall, rule Application, and rule Conclusion (IRAC) to assess the holistic reasoning pipeline. We conduct extensive evaluations on different prompting strategies and more than 10 LLMs, including foundation models, reasoning models and multimodal vision models. The results show that, although current LLMs achieve good performance, their capabilities largely rely on semantic matching rather than principled reasoning grounded in the underlying HSE compliance context. Moreover, their native reasoning trace lacks the systematic legal reasoning required for rigorous HSE compliance assessment. To alleviate these, we propose a new prompting technique, Reasoning of Expert (RoE), which guides LLMs to simulate the reasoning process of different experts for compliance assessment and reach a more accurate unified decision. We hope our study highlights reasoning gaps in LLMs for HSE compliance and inspires further research on related tasks.
Abstract:Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. Current hybrid RAG system retrieves evidence from both knowledge graphs (KGs) and text documents to support LLM reasoning. However, it faces challenges like handling multi-hop reasoning, multi-entity questions, multi-source verification, and effective graph utilization. To address these limitations, we present Hydra, a training-free framework that unifies graph topology, document semantics, and source reliability to support deep, faithful reasoning in LLMs. Hydra handles multi-hop and multi-entity problems through agent-driven exploration that combines structured and unstructured retrieval, increasing both diversity and precision of evidence. To tackle multi-source verification, Hydra uses a tri-factor cross-source verification (source trustworthiness assessment, cross-source corroboration, and entity-path alignment), to balance topic relevance with cross-modal agreement. By leveraging graph structure, Hydra fuses heterogeneous sources, guides efficient exploration, and prunes noise early. Comprehensive experiments on seven benchmark datasets show that Hydra achieves overall state-of-the-art results on all benchmarks with GPT-3.5, outperforming the strong hybrid baseline ToG-2 by an average of 20.3% and up to 30.1%. Furthermore, Hydra enables smaller models (e.g., Llama-3.1-8B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
Abstract:Ambiguity in natural language is a significant obstacle for achieving accurate text to structured data mapping through large language models (LLMs), which affects the performance of tasks such as mapping text to agentic tool calling and text-to-SQL queries. Existing methods of ambiguity handling either exploit ReACT framework to produce the correct mapping through trial and error, or supervised fine tuning to guide models to produce a biased mapping to improve certain tasks. In this paper, we adopt a different approach that characterizes the representation difference of ambiguous text in the latent space and leverage the difference to identify ambiguity before mapping them to structured data. To detect ambiguity of a sentence, we focused on the relationship between ambiguous questions and their interpretations and what cause the LLM ignore multiple interpretations. Different to the distance calculated by dense embedding vectors, we utilize the observation that ambiguity is caused by concept missing in latent space of LLM to design a new distance measurement, computed through the path kernel by the integral of gradient values for each concepts from sparse-autoencoder (SAE) under each state. We identify patterns to distinguish ambiguous questions with this measurement. Based on our observation, We propose a new framework to improve the performance of LLMs on ambiguous agentic tool calling through missing concepts prediction.
Abstract:Large language model-based agents are increasingly used in recommender systems (Agent4RSs) to achieve personalized behavior modeling. Specifically, Agent4RSs introduces memory mechanisms that enable the agents to autonomously learn and self-evolve from real-world interactions. However, to the best of our knowledge, how robust Agent4RSs are remains unexplored. As such, in this paper, we propose the first work to attack Agent4RSs by perturbing agents' memories, not only to uncover their limitations but also to enhance their security and robustness, ensuring the development of safer and more reliable AI agents. Given the security and privacy concerns, it is more practical to launch attacks under a black-box setting, where the accurate knowledge of the victim models cannot be easily obtained. Moreover, the practical attacks are often stealthy to maximize the impact. To this end, we propose a novel practical attack framework named DrunkAgent. DrunkAgent consists of a generation module, a strategy module, and a surrogate module. The generation module aims to produce effective and coherent adversarial textual triggers, which can be used to achieve attack objectives such as promoting the target items. The strategy module is designed to `get the target agents drunk' so that their memories cannot be effectively updated during the interaction process. As such, the triggers can play the best role. Both of the modules are optimized on the surrogate module to improve the transferability and imperceptibility of the attacks. By identifying and analyzing the vulnerabilities, our work provides critical insights that pave the way for building safer and more resilient Agent4RSs. Extensive experiments across various real-world datasets demonstrate the effectiveness of DrunkAgent.
Abstract:Deep reinforcement learning (DRL) has gained widespread adoption in control and decision-making tasks due to its strong performance in dynamic environments. However, DRL agents are vulnerable to noisy observations and adversarial attacks, and concerns about the adversarial robustness of DRL systems have emerged. Recent efforts have focused on addressing these robustness issues by establishing rigorous theoretical guarantees for the returns achieved by DRL agents in adversarial settings. Among these approaches, policy smoothing has proven to be an effective and scalable method for certifying the robustness of DRL agents. Nevertheless, existing certifiably robust DRL relies on policies trained with simple Gaussian augmentations, resulting in a suboptimal trade-off between certified robustness and certified return. To address this issue, we introduce a novel paradigm dubbed \texttt{C}ertified-r\texttt{A}dius-\texttt{M}aximizing \texttt{P}olicy (\texttt{CAMP}) training. \texttt{CAMP} is designed to enhance DRL policies, achieving better utility without compromising provable robustness. By leveraging the insight that the global certified radius can be derived from local certified radii based on training-time statistics, \texttt{CAMP} formulates a surrogate loss related to the local certified radius and optimizes the policy guided by this surrogate loss. We also introduce \textit{policy imitation} as a novel technique to stabilize \texttt{CAMP} training. Experimental results demonstrate that \texttt{CAMP} significantly improves the robustness-return trade-off across various tasks. Based on the results, \texttt{CAMP} can achieve up to twice the certified expected return compared to that of baselines. Our code is available at https://github.com/NeuralSec/camp-robust-rl.
Abstract:Recently, we have witnessed the rapid development of large language models, which have demonstrated excellent capabilities in the downstream task of code generation. However, despite their potential, LLM-based code generation still faces numerous technical and evaluation challenges, particularly when embedded in real-world development. In this paper, we present our vision for current research directions, and provide an in-depth analysis of existing studies on this task. We propose a six-layer vision framework that categorizes code generation process into distinct phases, namely Input Phase, Orchestration Phase, Development Phase, and Validation Phase. Additionally, we outline our vision workflow, which reflects on the currently prevalent frameworks. We systematically analyse the challenges faced by large language models, including those LLM-based agent frameworks, in code generation tasks. With these, we offer various perspectives and actionable recommendations in this area. Our aim is to provide guidelines for improving the reliability, robustness and usability of LLM-based code generation systems. Ultimately, this work seeks to address persistent challenges and to provide practical suggestions for a more pragmatic LLM-based solution for future code generation endeavors.
Abstract:The advent of Large Language Models (LLMs) has enabled the development of LLM agents capable of autonomously achieving under-specified goals and continuously evolving through post-deployment improvement, sometimes without requiring code or model updates. Conventional approaches, such as pre-defined test cases and code/model redevelopment pipelines, are inadequate for addressing the unique challenges of LLM agent development, particularly in terms of quality and risk control. This paper introduces an evaluation-driven design approach, inspired by test-driven development, to address these challenges. Through a multivocal literature review (MLR), we synthesize existing LLM evaluation methods and propose a novel process model and reference architecture specifically designed for LLM agents. The proposed approach integrates online and offline evaluations to support adaptive runtime adjustments and systematic offline redevelopment, improving runtime pipelines, artifacts, system architecture, and LLMs by continuously incorporating evaluation results, including fine-grained feedback from human and AI evaluators.
Abstract:The ever-improving quality of LLMs has fueled the growth of a diverse range of downstream tasks, leading to an increased demand for AI automation and a burgeoning interest in developing foundation model (FM)-based autonomous agents. As AI agent systems tackle more complex tasks and evolve, they involve a wider range of stakeholders, including agent users, agentic system developers and deployers, and AI model developers. These systems also integrate multiple components such as AI agent workflows, RAG pipelines, prompt management, agent capabilities, and observability features. In this case, obtaining reliable outputs and answers from these agents remains challenging, necessitating a dependable execution process and end-to-end observability solutions. To build reliable AI agents and LLM applications, it is essential to shift towards designing AgentOps platforms that ensure observability and traceability across the entire development-to-production life-cycle. To this end, we conducted a rapid review and identified relevant AgentOps tools from the agentic ecosystem. Based on this review, we provide an overview of the essential features of AgentOps and propose a comprehensive overview of observability data/traceable artifacts across the agent production life-cycle. Our findings provide a systematic overview of the current AgentOps landscape, emphasizing the critical role of observability/traceability in enhancing the reliability of autonomous agent systems.
Abstract:Artificial Intelligence (AI) is a widely developed and adopted technology across entire industry sectors. Integrating environmental, social, and governance (ESG) considerations with AI investments is crucial for ensuring ethical and sustainable technological advancement. Particularly from an investor perspective, this integration not only mitigates risks but also enhances long-term value creation by aligning AI initiatives with broader societal goals. Yet, this area has been less explored in both academia and industry. To bridge the gap, we introduce a novel ESG-AI framework, which is developed based on insights from engagements with 28 companies and comprises three key components. The framework provides a structured approach to this integration, developed in collaboration with industry practitioners. The ESG-AI framework provides an overview of the environmental and social impacts of AI applications, helping users such as investors assess the materiality of AI use. Moreover, it enables investors to evaluate a company's commitment to responsible AI through structured engagements and thorough assessment of specific risk areas. We have publicly released the framework and toolkit in April 2024, which has received significant attention and positive feedback from the investment community. This paper details each component of the framework, demonstrating its applicability in real-world contexts and its potential to guide ethical AI investments.
Abstract:The rapid advancement of AI technology has led to widespread applications of agent systems across various domains. However, the need for detailed architecture design poses significant challenges in designing and operating these systems. This paper introduces a taxonomy focused on the architectures of foundation-model-based agents, addressing critical aspects such as functional capabilities and non-functional qualities. We also discuss the operations involved in both design-time and run-time phases, providing a comprehensive view of architectural design and operational characteristics. By unifying and detailing these classifications, our taxonomy aims to improve the design of foundation-model-based agents. Additionally, the paper establishes a decision model that guides critical design and runtime decisions, offering a structured approach to enhance the development of foundation-model-based agents. Our contributions include providing a structured architecture design option and guiding the development process of foundation-model-based agents, thereby addressing current fragmentation in the field.