Abstract:Recent studies have shown that recommender systems (RSs) are highly vulnerable to data poisoning attacks. Understanding attack tactics helps improve the robustness of RSs. We intend to develop efficient attack methods that use limited resources to generate high-quality fake user profiles to achieve 1) transferability among black-box RSs 2) and imperceptibility among detectors. In order to achieve these goals, we introduce textual reviews of products to enhance the generation quality of the profiles. Specifically, we propose a novel attack framework named R-Trojan, which formulates the attack objectives as an optimization problem and adopts a tailored transformer-based generative adversarial network (GAN) to solve it so that high-quality attack profiles can be produced. Comprehensive experiments on real-world datasets demonstrate that R-Trojan greatly outperforms state-of-the-art attack methods on various victim RSs under black-box settings and show its good imperceptibility.
Abstract:Email threat is a serious issue for enterprise security, which consists of various malicious scenarios, such as phishing, fraud, blackmail and malvertisement. Traditional anti-spam gateway commonly requires to maintain a greylist to filter out unexpected emails based on suspicious vocabularies existed in the mail subject and content. However, the signature-based approach cannot effectively discover novel and unknown suspicious emails that utilize various hot topics at present, such as COVID-19 and US election. To address the problem, in this paper, we present Holmes, an efficient and lightweight semantic based engine for anomalous email detection. Holmes can convert each event log of email to a sentence through word embedding then extract interesting items among them by novelty detection. Based on our observations, we claim that, in an enterprise environment, there is a stable relation between senders and receivers, but suspicious emails are commonly from unusual sources, which can be detected through the rareness selection. We evaluate the performance of Holmes in a real-world enterprise environment, in which it sends and receives around 5,000 emails each day. As a result, Holmes can achieve a high detection rate (output around 200 suspicious emails per day) and maintain a low false alarm rate for anomaly detection.
Abstract:Motion control of mobile manipulators (a robotic arm mounted on a mobile base) can be challenging for complex tasks such as material and package handling. In this paper, a task-space stabilization controller based on Nonlinear Model Predictive Control (NMPC) is designed and implemented to a 10 Degrees of Freedom (DOF) mobile manipulator which consists of a 7-DOF robotic arm and a 3-DOF mobile base. The system model is based on kinematic models where the end-effector orientation is parameterized directly by a rotation matrix. The state and control constraints as well as singularity constraints are explicitly included in the NMPC formulation. The controller is tested using real-time simulations, which demonstrate high positioning accuracy with tractable computational cost.
Abstract:Network intrusion detection (NID) is an essential defense strategy that is used to discover the trace of suspicious user behaviour in large-scale cyberspace, and machine learning (ML), due to its capability of automation and intelligence, has been gradually adopted as a mainstream hunting method in recent years. However, traditional ML based network intrusion detection systems (NIDSs) are not effective to recognize unknown threats and their high detection rate often comes with the cost of high false alarms, which leads to the problem of alarm fatigue. To address the above problems, in this paper, we propose a novel neural network based detection system, DualNet, which is constructed with a general feature extraction stage and a crucial feature learning stage. DualNet can rapidly reuse the spatial-temporal features in accordance with their importance to facilitate the entire learning process and simultaneously mitigate several optimization problems occurred in deep learning (DL). We evaluate the DualNet on two benchmark cyber attack datasets, NSL-KDD and UNSW-NB15. Our experiment shows that DualNet outperforms classical ML based NIDSs and is more effective than existing DL methods for NID in terms of accuracy, detection rate and false alarm rate.
Abstract:High false alarm rate and low detection rate are the major sticking points for unknown threat perception. To address the problems, in the paper, we present a densely connected residual network (Densely-ResNet) for attack recognition. Densely-ResNet is built with several basic residual units, where each of them consists of a series of Conv-GRU subnets by wide connections. Our evaluation shows that Densely-ResNet can accurately discover various unknown threats that appear in edge, fog and cloud layers and simultaneously maintain a much lower false alarm rate than existing algorithms.