Hye-Young
Abstract:The utilization of Transformer-based models prospers the growth of multi-document summarization (MDS). Given the huge impact and widespread adoption of Transformer-based models in various natural language processing tasks, investigating their performance and behaviors in the context of MDS becomes crucial for advancing the field and enhancing the quality of summary. To thoroughly examine the behaviours of Transformer-based MDS models, this paper presents five empirical studies on (1) measuring the impact of document boundary separators quantitatively; (2) exploring the effectiveness of different mainstream Transformer structures; (3) examining the sensitivity of the encoder and decoder; (4) discussing different training strategies; and (5) discovering the repetition in a summary generation. The experimental results on prevalent MDS datasets and eleven evaluation metrics show the influence of document boundary separators, the granularity of different level features and different model training strategies. The results also reveal that the decoder exhibits greater sensitivity to noises compared to the encoder. This underscores the important role played by the decoder, suggesting a potential direction for future research in MDS. Furthermore, the experimental results indicate that the repetition problem in the generated summaries has correlations with the high uncertainty scores.
Abstract:The robustness of large language models (LLMs) becomes increasingly important as their use rapidly grows in a wide range of domains. Retrieval-Augmented Generation (RAG) is considered as a means to improve the trustworthiness of text generation from LLMs. However, how the outputs from RAG-based LLMs are affected by slightly different inputs is not well studied. In this work, we find that the insertion of even a short prefix to the prompt leads to the generation of outputs far away from factually correct answers. We systematically evaluate the effect of such prefixes on RAG by introducing a novel optimization technique called Gradient Guided Prompt Perturbation (GGPP). GGPP achieves a high success rate in steering outputs of RAG-based LLMs to targeted wrong answers. It can also cope with instructions in the prompts requesting to ignore irrelevant context. We also exploit LLMs' neuron activation difference between prompts with and without GGPP perturbations to give a method that improves the robustness of RAG-based LLMs through a highly effective detector trained on neuron activation triggered by GGPP generated prompts. Our evaluation on open-sourced LLMs demonstrates the effectiveness of our methods.