Abstract:Recent advancements in Text-to-image (T2I) generation have witnessed a shift from adapting text to fixed backgrounds to creating images around text. Traditional approaches are often limited to generate layouts within static images for effective text placement. Our proposed approach, TextCenGen, introduces a dynamic adaptation of the blank region for text-friendly image generation, emphasizing text-centric design and visual harmony generation. Our method employs force-directed attention guidance in T2I models to generate images that strategically reserve whitespace for pre-defined text areas, even for text or icons at the golden ratio. Observing how cross-attention maps affect object placement, we detect and repel conflicting objects using a force-directed graph approach, combined with a Spatial Excluding Cross-Attention Constraint for smooth attention in whitespace areas. As a novel task in graphic design, experiments indicate that TextCenGen outperforms existing methods with more harmonious compositions. Furthermore, our method significantly enhances T2I model outcomes on our specially collected prompt datasets, catering to varied text positions. These results demonstrate the efficacy of TextCenGen in creating more harmonious and integrated text-image compositions.
Abstract:Most modern multi-object tracking (MOT) systems follow the tracking-by-detection paradigm. It first localizes the objects of interest, then extracting their individual appearance features to make data association. The individual features, however, are susceptible to the negative effects as occlusions, illumination variations and inaccurate detections, thus resulting in the mismatch in the association inference. In this work, we propose to handle this problem via making full use of the neighboring information. Our motivations derive from the observations that people tend to move in a group. As such, when an individual target's appearance is seriously changed, we can still identify it with the help of its neighbors. To this end, we first utilize the spatio-temporal relations produced by the tracking self to efficiently select suitable neighbors for the targets. Subsequently, we construct neighbor graph of the target and neighbors then employ the graph convolution networks (GCN) to learn the graph features. To the best of our knowledge, it is the first time to exploit neighbor cues via GCN in MOT. Finally, we test our approach on the MOT benchmarks and achieve state-of-the-art performance in online tracking.