Abstract:A major limitation of prompt tuning is its dependence on large labeled training datasets. Under few-shot learning settings, prompt tuning lags far behind full-model fine-tuning, limiting its scope of application. In this paper, we leverage the powerful LLMs to synthesize task-specific labeled data for training the soft prompts. We first introduce a distribution-aligned weighted generator tuning (DawGen) method to encourage generating in-distribution data that aligns with the few-shot real data. Then, we train soft prompts on both synthetic and real datasets using a gradient surgery approach, which eliminates the conflicting gradients from different data sources. Experiments on seven sentence-pair classification datasets demonstrate the effectiveness of our proposed method for boosting prompt tuning in few-shot learning settings. Results on QQP, MRPC, and SICK datasets are even comparable to the performance of transfer learning from large real-world datasets, showing the promise of synthetic data as an alternative for enhancing soft prompt tuning.
Abstract:Large language models (LLMs) have brought a great breakthrough to the natural language processing (NLP) community, while leading the challenge of handling concurrent customer queries due to their high throughput demands. Data multiplexing addresses this by merging multiple inputs into a single composite input, allowing more efficient inference through a shared forward pass. However, as distinguishing individuals from a composite input is challenging, conventional methods typically require training the entire backbone, yet still suffer from performance degradation. In this paper, we introduce RevMUX, a parameter-efficient data multiplexing framework that incorporates a reversible design in the multiplexer, which can be reused by the demultiplexer to perform reverse operations and restore individual samples for classification. Extensive experiments on four datasets and three types of LLM backbones demonstrate the effectiveness of RevMUX for enhancing LLM inference efficiency while retaining a satisfactory classification performance.
Abstract:Natural Language Counterfactual generation aims to minimally modify a given text such that the modified text will be classified into a different class. The generated counterfactuals provide insight into the reasoning behind a model's predictions by highlighting which words significantly influence the outcomes. Additionally, they can be used to detect model fairness issues or augment the training data to enhance the model's robustness. A substantial amount of research has been conducted to generate counterfactuals for various NLP tasks, employing different models and methodologies. With the rapid growth of studies in this field, a systematic review is crucial to guide future researchers and developers. To bridge this gap, this survey comprehensively overview textual counterfactual generation methods, particularly including those based on Large Language Models. We propose a new taxonomy that categorizes the generation methods into four groups and systematically summarize the metrics for evaluating the generation quality. Finally, we discuss ongoing research challenges and outline promising directions for future work.
Abstract:Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes. Training with CAD enhances model robustness against spurious features that happen to correlate with labels by spreading the casual relationships across different classes. Yet, recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information, inadvertently introducing biases that may impair performance on out-ofdistribution (OOD) datasets. To mitigate this issue, we employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues. We theoretically prove that contrastive loss can encourage models to leverage a broader range of features beyond those modified ones. Comprehensive experiments on two human-edited CAD datasets demonstrate that our proposed method outperforms the state-of-the-art on OOD datasets.
Abstract:Emerging unsupervised reconstruction techniques based on implicit neural representation (INR), such as NeRP, CoIL, and SCOPE, have shown unique capabilities in CT linear inverse imaging. In this work, we propose a novel unsupervised density neural representation (Diner) to tackle the challenging problem of CT metal artifacts when scanned objects contain metals. The drastic variation of linear attenuation coefficients (LACs) of metals over X-ray spectra leads to a nonlinear beam hardening effect (BHE) in CT measurements. Recovering CT images from metal-affected measurements therefore poses a complicated nonlinear inverse problem. Existing metal artifact reduction (MAR) techniques mostly formulate the MAR as an image inpainting task, which ignores the energy-induced BHE and produces suboptimal performance. Instead, our Diner introduces an energy-dependent polychromatic CT forward model to the INR framework, addressing the nonlinear nature of the MAR problem. Specifically, we decompose the energy-dependent LACs into energy-independent densities and energy-dependent mass attenuation coefficients (MACs) by fully considering the physical model of X-ray absorption. Using the densities as pivot variables and the MACs as known prior knowledge, the LACs can be accurately reconstructed from the raw measurements. Technically, we represent the unknown density map as an implicit function of coordinates. Combined with a novel differentiable forward model simulating the physical acquisition from the densities to the measurements, our Diner optimizes a multi-layer perception network to approximate the implicit function by minimizing predicted errors between the estimated and real measurements. Experimental results on simulated and real datasets confirm the superiority of our unsupervised Diner against popular supervised techniques in MAR performance and robustness.
Abstract:The surge in black-box AI models has prompted the need to explain the internal mechanism and justify their reliability, especially in high-stakes applications, such as healthcare and autonomous driving. Due to the lack of a rigorous definition of explainable AI (XAI), a plethora of research related to explainability, interpretability, and transparency has been developed to explain and analyze the model from various perspectives. Consequently, with an exhaustive list of papers, it becomes challenging to have a comprehensive overview of XAI research from all aspects. Considering the popularity of neural networks in AI research, we narrow our focus to a specific area of XAI research: gradient based explanations, which can be directly adopted for neural network models. In this review, we systematically explore gradient based explanation methods to date and introduce a novel taxonomy to categorize them into four distinct classes. Then, we present the essence of technique details in chronological order and underscore the evolution of algorithms. Next, we introduce both human and quantitative evaluations to measure algorithm performance. More importantly, we demonstrate the general challenges in XAI and specific challenges in gradient based explanations. We hope that this survey can help researchers understand state-of-the-art progress and their corresponding disadvantages, which could spark their interest in addressing these issues in future work.
Abstract:The recent surge in research focused on generating synthetic data from large language models (LLMs), especially for scenarios with limited data availability, marks a notable shift in Generative Artificial Intelligence (AI). Their ability to perform comparably to real-world data positions this approach as a compelling solution to low-resource challenges. This paper delves into advanced technologies that leverage these gigantic LLMs for the generation of task-specific training data. We outline methodologies, evaluation techniques, and practical applications, discuss the current limitations, and suggest potential pathways for future research.
Abstract:The task of multimodal relation extraction has attracted significant research attention, but progress is constrained by the scarcity of available training data. One natural thought is to extend existing datasets with cross-modal generative models. In this paper, we consider a novel problem setting, where only unimodal data, either text or image, are available during training. We aim to train a multimodal classifier from synthetic data that perform well on real multimodal test data. However, training with synthetic data suffers from two obstacles: lack of data diversity and label information loss. To alleviate the issues, we propose Mutual Information-aware Multimodal Iterated Relational dAta GEneration (MI2RAGE), which applies Chained Cross-modal Generation (CCG) to promote diversity in the generated data and exploits a teacher network to select valuable training samples with high mutual information with the ground-truth labels. Comparing our method to direct training on synthetic data, we observed a significant improvement of 24.06% F1 with synthetic text and 26.42% F1 with synthetic images. Notably, our best model trained on completely synthetic images outperforms prior state-of-the-art models trained on real multimodal data by a margin of 3.76% in F1. Our codebase will be made available upon acceptance.
Abstract:Contemporary news reporting increasingly features multimedia content, motivating research on multimedia event extraction. However, the task lacks annotated multimodal training data and artificially generated training data suffer from the distribution shift from the real-world data. In this paper, we propose Cross-modality Augmented Multimedia Event Learning (CAMEL), which successfully utilizes artificially generated multimodal training data and achieves state-of-the-art performance. Conditioned on unimodal training data, we generate multimodal training data using off-the-shelf image generators like Stable Diffusion and image captioners like BLIP. In order to learn robust features that are effective across domains, we devise an iterative and gradual annealing training strategy. Substantial experiments show that CAMEL surpasses state-of-the-art (SOTA) baselines on the M2E2 benchmark. On multimedia events in particular, we outperform the prior SOTA by 4.2\% F1 on event mention identification and by 9.8\% F1 on argument identification, which demonstrates that CAMEL learns synergistic representations from the two modalities.
Abstract:Recent advances in NLP are brought by a range of large-scale pretrained language models (PLMs). These PLMs have brought significant performance gains for a range of NLP tasks, circumventing the need to customize complex designs for specific tasks. However, most current work focus on finetuning PLMs on a domain-specific datasets, ignoring the fact that the domain gap can lead to overfitting and even performance drop. Therefore, it is practically important to find an appropriate method to effectively adapt PLMs to a target domain of interest. Recently, a range of methods have been proposed to achieve this purpose. Early surveys on domain adaptation are not suitable for PLMs due to the sophisticated behavior exhibited by PLMs from traditional models trained from scratch and that domain adaptation of PLMs need to be redesigned to take effect. This paper aims to provide a survey on these newly proposed methods and shed light in how to apply traditional machine learning methods to newly evolved and future technologies. By examining the issues of deploying PLMs for downstream tasks, we propose a taxonomy of domain adaptation approaches from a machine learning system view, covering methods for input augmentation, model optimization and personalization. We discuss and compare those methods and suggest promising future research directions.