Abstract:Unrestricted adversarial attacks typically manipulate the semantic content of an image (e.g., color or texture) to create adversarial examples that are both effective and photorealistic. Recent works have utilized the diffusion inversion process to map images into a latent space, where high-level semantics are manipulated by introducing perturbations. However, they often results in substantial semantic distortions in the denoised output and suffers from low efficiency. In this study, we propose a novel framework called Semantic-Consistent Unrestricted Adversarial Attacks (SCA), which employs an inversion method to extract edit-friendly noise maps and utilizes Multimodal Large Language Model (MLLM) to provide semantic guidance throughout the process. Under the condition of rich semantic information provided by MLLM, we perform the DDPM denoising process of each step using a series of edit-friendly noise maps, and leverage DPM Solver++ to accelerate this process, enabling efficient sampling with semantic consistency. Compared to existing methods, our framework enables the efficient generation of adversarial examples that exhibit minimal discernible semantic changes. Consequently, we for the first time introduce Semantic-Consistent Adversarial Examples (SCAE). Extensive experiments and visualizations have demonstrated the high efficiency of SCA, particularly in being on average 12 times faster than the state-of-the-art attacks. Our code can be found at https://github.com/Pan-Zihao/SCA}{https://github.com/Pan-Zihao/SCA.
Abstract:Generative Transformer-based models have achieved remarkable proficiency on solving diverse problems. However, their generalization ability is not fully understood and not always satisfying. Researchers take basic mathematical tasks like n-digit addition or multiplication as important perspectives for investigating their generalization behaviors. Curiously, it is observed that when training on n-digit operations (e.g., additions) in which both input operands are n-digit in length, models generalize successfully on unseen n-digit inputs (in-distribution (ID) generalization), but fail miserably and mysteriously on longer, unseen cases (out-of-distribution (OOD) generalization). Studies try to bridge this gap with workarounds such as modifying position embedding, fine-tuning, and priming with more extensive or instructive data. However, without addressing the essential mechanism, there is hardly any guarantee regarding the robustness of these solutions. We bring this unexplained performance drop into attention and ask whether it is purely from random errors. Here we turn to the mechanistic line of research which has notable successes in model interpretability. We discover that the strong ID generalization stems from structured representations, while behind the unsatisfying OOD performance, the models still exhibit clear learned algebraic structures. Specifically, these models map unseen OOD inputs to outputs with equivalence relations in the ID domain. These highlight the potential of the models to carry useful information for improved generalization.
Abstract:Achieving gender equality is an important pillar for humankind's sustainable future. Pioneering data-driven gender bias research is based on large-scale public records such as scientific papers, patents, and company registrations, covering female researchers, inventors and entrepreneurs, and so on. Since gender information is often missing in relevant datasets, studies rely on tools to infer genders from names. However, available open-sourced Chinese gender-guessing tools are not yet suitable for scientific purposes, which may be partially responsible for female Chinese being underrepresented in mainstream gender bias research and affect their universality. Specifically, these tools focus on character-level information while overlooking the fact that the combinations of Chinese characters in multi-character names, as well as the components and pronunciations of characters, convey important messages. As a first effort, we design a Chinese Heterogeneous Graph Attention (CHGAT) model to capture the heterogeneity in component relationships and incorporate the pronunciations of characters. Our model largely surpasses current tools and also outperforms the state-of-the-art algorithm. Last but not least, the most popular Chinese name-gender dataset is single-character based with far less female coverage from an unreliable source, naturally hindering relevant studies. We open-source a more balanced multi-character dataset from an official source together with our code, hoping to help future research promoting gender equality.