Abstract:Bilevel optimization, addressing challenges in hierarchical learning tasks, has gained significant interest in machine learning. The practical implementation of the gradient descent method to bilevel optimization encounters computational hurdles, notably the computation of the exact lower-level solution and the inverse Hessian of the lower-level objective. Although these two aspects are inherently connected, existing methods typically handle them separately by solving the lower-level problem and a linear system for the inverse Hessian-vector product. In this paper, we introduce a general framework to address these computational challenges in a coordinated manner. Specifically, we leverage quasi-Newton algorithms to accelerate the resolution of the lower-level problem while efficiently approximating the inverse Hessian-vector product. Furthermore, by exploiting the superlinear convergence properties of BFGS, we establish the non-asymptotic convergence analysis of the BFGS adaptation within our framework. Numerical experiments demonstrate the comparable or superior performance of the proposed algorithms in real-world learning tasks, including hyperparameter optimization, data hyper-cleaning, and few-shot meta-learning.
Abstract:This paper presents a new approach and algorithm for solving a class of constrained Bi-Level Optimization (BLO) problems in which the lower-level problem involves constraints coupling both upper-level and lower-level variables. Such problems have recently gained significant attention due to their broad applicability in machine learning. However, conventional gradient-based methods unavoidably rely on computationally intensive calculations related to the Hessian matrix. To address this challenge, we begin by devising a smooth proximal Lagrangian value function to handle the constrained lower-level problem. Utilizing this construct, we introduce a single-level reformulation for constrained BLOs that transforms the original BLO problem into an equivalent optimization problem with smooth constraints. Enabled by this reformulation, we develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)-that is straightforward to implement in a single loop manner. Consequently, LV-HBA is especially well-suited for machine learning applications. Furthermore, we offer non-asymptotic convergence analysis for LV-HBA, eliminating the need for traditional strong convexity assumptions for the lower-level problem while also being capable of accommodating non-singleton scenarios. Empirical results substantiate the algorithm's superior practical performance.