Abstract:Speculative decoding has emerged as a promising approach to accelerate inference in vision-language models (VLMs) by enabling parallel verification of multiple draft tokens. However, existing methods rely on static tree structures that remain fixed throughout the decoding process, failing to adapt to the varying prediction difficulty across generation steps. This leads to suboptimal acceptance lengths and limited speedup. In this paper, we propose SAGE, a novel framework that dynamically adjusts the speculation tree structure based on real-time prediction uncertainty. Our key insight is that output entropy serves as a natural confidence indicator with strong temporal correlation across decoding steps. SAGE constructs deeper-narrower trees for high-confidence predictions to maximize speculation depth, and shallower-wider trees for uncertain predictions to diversify exploration. SAGE improves acceptance lengths and achieves faster acceleration compared to static tree baselines. Experiments on multiple benchmarks demonstrate the effectiveness of SAGE: without any loss in output quality, it delivers up to $3.36\times$ decoding speedup for LLaVA-OneVision-72B and $3.18\times$ for Qwen2.5-VL-72B.
Abstract:Recent years have witnessed the vulnerability of Federated Learning (FL) against gradient leakage attacks, where the private training data can be recovered from the exchanged gradients, making gradient protection a critical issue for the FL training process. Existing solutions often resort to perturbation-based mechanisms, such as differential privacy, where each participating client injects a specific amount of noise into local gradients before aggregating to the server, and the global distribution variation finally conceals the gradient privacy. However, perturbation is not always the panacea for gradient protection since the robustness heavily relies on the injected noise. This intuition raises an interesting question: \textit{is it possible to deactivate existing protection mechanisms by removing the perturbation inside the gradients?} In this paper, we present the answer: \textit{yes} and propose the Perturbation-resilient Gradient Leakage Attack (PGLA), the first attempt to recover the perturbed gradients, without additional access to the original model structure or third-party data. Specifically, we leverage the inherent diffusion property of gradient perturbation protection and construct a novel diffusion-based denoising model to implement PGLA. Our insight is that capturing the disturbance level of perturbation during the diffusion reverse process can release the gradient denoising capability, which promotes the diffusion model to generate approximate gradients as the original clean version through adaptive sampling steps. Extensive experiments demonstrate that PGLA effectively recovers the protected gradients and exposes the FL training process to the threat of gradient leakage, achieving the best quality in gradient denoising and data recovery compared to existing models. We hope to arouse public attention on PGLA and its defense.