Abstract:Visual Question Generation (VQG) has gained significant attention due to its potential in educational applications. However, VQG researches mainly focus on natural images, neglecting diagrams in educational materials used to assess students' conceptual understanding. To address this gap, we introduce DiagramQG, a dataset containing 8,372 diagrams and 19,475 questions across various subjects. DiagramQG introduces concept and target text constraints, guiding the model to generate concept-focused questions for educational purposes. Meanwhile, we present the Hierarchical Knowledge Integration framework for Diagram Question Generation (HKI-DQG) as a strong baseline. This framework obtains multi-scale patches of diagrams and acquires knowledge using a visual language model with frozen parameters. It then integrates knowledge, text constraints and patches to generate concept-focused questions. We evaluate the performance of existing VQG models, open-source and closed-source vision-language models, and HKI-DQG on the DiagramQG dataset. Our HKI-DQG outperform existing methods, demonstrating that it serves as a strong baseline. Furthermore, to assess its generalizability, we apply HKI-DQG to two other VQG datasets of natural images, namely VQG-COCO and K-VQG, achieving state-of-the-art performance.The dataset and code are available at https://dxzxy12138.github.io/diagramqg-home.
Abstract:Chart Question Answering (CQA) aims at answering questions based on the visual chart content, which plays an important role in chart sumarization, business data analysis, and data report generation. CQA is a challenging multi-modal task because of the strong context dependence and complex reasoning requirement. The former refers to answering this question strictly based on the analysis of the visual content or internal data of the given chart, while the latter emphasizes the various logical and numerical reasoning involved in answer prediction process. In this paper, we pay more attention on the complex reasoning in CQA task, and propose a novel Graph-of-Thought (GoT) guided compositional reasoning model called GoT-CQA to overcome this problem. At first, we transform the chart-oriented question into a directed acyclic GoT composed of multiple operator nodes, including localization, numerical and logical operator. It intuitively reflects the human brain's solution process to this question. After that, we design an efficient auto-compositional reasoning framework guided by the GoT, to excute the multi-step reasoning operations in various types of questions. Comprehensive experiments on ChartQA and PlotQA-D datasets show that GoT-CQA achieves outstanding performance, especially in complex human-written and reasoning questions, comparing with the latest popular baselines.
Abstract:Chart understanding enables automated data analysis for humans, which requires models to achieve highly accurate visual comprehension. While existing Visual Language Models (VLMs) have shown progress in chart understanding, the lack of high-quality training data and comprehensive evaluation benchmarks hinders VLM chart comprehension. In this paper, we introduce EvoChart, a novel self-training method for generating synthetic chart data to enhance VLMs' capabilities in real-world chart comprehension. We also propose EvoChart-QA, a noval benchmark for measuring models' chart comprehension abilities in real-world scenarios. Specifically, EvoChart is a unique self-training data synthesis approach that simultaneously produces high-quality training corpus and a high-performance chart understanding model. EvoChart-QA consists of 650 distinct real-world charts collected from 140 different websites and 1,250 expert-curated questions that focus on chart understanding. Experimental results on various open-source and proprietary VLMs tested on EvoChart-QA demonstrate that even the best proprietary model, GPT-4o, achieves only 49.8% accuracy. Moreover, the EvoChart method significantly boosts the performance of open-source VLMs on real-world chart understanding tasks, achieving 54.2% accuracy on EvoChart-QA.
Abstract:Charts are widely used for data visualization across various fields, including education, research, and business. Chart Question Answering (CQA) is an emerging task focused on the automatic interpretation and reasoning of data presented in charts. However, chart images are inherently difficult to interpret, and chart-related questions often involve complex logical and numerical reasoning, which hinders the performance of existing models. This paper introduces VProChart, a novel framework designed to address these challenges in CQA by integrating a lightweight Visual Perception Alignment Agent (VPAgent) and a Programmatic Solution Reasoning approach. VPAgent aligns and models chart elements based on principles of human visual perception, enhancing the understanding of chart context. The Programmatic Solution Reasoning approach leverages large language models (LLMs) to transform natural language reasoning questions into structured solution programs, facilitating precise numerical and logical reasoning. Extensive experiments on benchmark datasets such as ChartQA and PlotQA demonstrate that VProChart significantly outperforms existing methods, highlighting its capability in understanding and reasoning with charts.