Abstract:Charts are widely used for data visualization across various fields, including education, research, and business. Chart Question Answering (CQA) is an emerging task focused on the automatic interpretation and reasoning of data presented in charts. However, chart images are inherently difficult to interpret, and chart-related questions often involve complex logical and numerical reasoning, which hinders the performance of existing models. This paper introduces VProChart, a novel framework designed to address these challenges in CQA by integrating a lightweight Visual Perception Alignment Agent (VPAgent) and a Programmatic Solution Reasoning approach. VPAgent aligns and models chart elements based on principles of human visual perception, enhancing the understanding of chart context. The Programmatic Solution Reasoning approach leverages large language models (LLMs) to transform natural language reasoning questions into structured solution programs, facilitating precise numerical and logical reasoning. Extensive experiments on benchmark datasets such as ChartQA and PlotQA demonstrate that VProChart significantly outperforms existing methods, highlighting its capability in understanding and reasoning with charts.
Abstract:Chart understanding enables automated data analysis for humans, which requires models to achieve highly accurate visual comprehension. While existing Visual Language Models (VLMs) have shown progress in chart understanding, the lack of high-quality training data and comprehensive evaluation benchmarks hinders VLM chart comprehension. In this paper, we introduce EvoChart, a novel self-training method for generating synthetic chart data to enhance VLMs' capabilities in real-world chart comprehension. We also propose EvoChart-QA, a noval benchmark for measuring models' chart comprehension abilities in real-world scenarios. Specifically, EvoChart is a unique self-training data synthesis approach that simultaneously produces high-quality training corpus and a high-performance chart understanding model. EvoChart-QA consists of 650 distinct real-world charts collected from 140 different websites and 1,250 expert-curated questions that focus on chart understanding. Experimental results on various open-source and proprietary VLMs tested on EvoChart-QA demonstrate that even the best proprietary model, GPT-4o, achieves only 49.8% accuracy. Moreover, the EvoChart method significantly boosts the performance of open-source VLMs on real-world chart understanding tasks, achieving 54.2% accuracy on EvoChart-QA.