Abstract:As an essential task in autonomous driving (AD), motion prediction aims to predict the future states of surround objects for navigation. One natural solution is to estimate the position of other agents in a step-by-step manner where each predicted time-step is conditioned on both observed time-steps and previously predicted time-steps, i.e., autoregressive prediction. Pioneering works like SocialLSTM and MFP design their decoders based on this intuition. However, almost all state-of-the-art works assume that all predicted time-steps are independent conditioned on observed time-steps, where they use a single linear layer to generate positions of all time-steps simultaneously. They dominate most motion prediction leaderboards due to the simplicity of training MLPs compared to autoregressive networks. In this paper, we introduce the GPT style next token prediction into motion forecasting. In this way, the input and output could be represented in a unified space and thus the autoregressive prediction becomes more feasible. However, different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations. To this end, we propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations, e.g., encoding the transformation between coordinate systems for spatial relativity while adopting RoPE for temporal relativity. Empirically, by equipping with the aforementioned tailored designs, the proposed method achieves state-of-the-art performance in the Waymo Open Motion and Waymo Interaction datasets. Notably, AMP outperforms other recent autoregressive motion prediction methods: MotionLM and StateTransformer, which demonstrates the effectiveness of the proposed designs.
Abstract:This paper proposes a simple, yet effective framework, called GiT, simultaneously applicable for various vision tasks only with a vanilla ViT. Motivated by the universality of the Multi-layer Transformer architecture (e.g, GPT) widely used in large language models (LLMs), we seek to broaden its scope to serve as a powerful vision foundation model (VFM). However, unlike language modeling, visual tasks typically require specific modules, such as bounding box heads for detection and pixel decoders for segmentation, greatly hindering the application of powerful multi-layer transformers in the vision domain. To solve this, we design a universal language interface that empowers the successful auto-regressive decoding to adeptly unify various visual tasks, from image-level understanding (e.g., captioning), over sparse perception (e.g., detection), to dense prediction (e.g., segmentation). Based on the above designs, the entire model is composed solely of a ViT, without any specific additions, offering a remarkable architectural simplification. GiT is a multi-task visual model, jointly trained across five representative benchmarks without task-specific fine-tuning. Interestingly, our GiT builds a new benchmark in generalist performance, and fosters mutual enhancement across tasks, leading to significant improvements compared to isolated training. This reflects a similar impact observed in LLMs. Further enriching training with 27 datasets, GiT achieves strong zero-shot results over various tasks. Due to its simple design, this paradigm holds promise for narrowing the architectural gap between vision and language. Code and models will be available at \url{https://github.com/Haiyang-W/GiT}.
Abstract:Jointly processing information from multiple sensors is crucial to achieving accurate and robust perception for reliable autonomous driving systems. However, current 3D perception research follows a modality-specific paradigm, leading to additional computation overheads and inefficient collaboration between different sensor data. In this paper, we present an efficient multi-modal backbone for outdoor 3D perception named UniTR, which processes a variety of modalities with unified modeling and shared parameters. Unlike previous works, UniTR introduces a modality-agnostic transformer encoder to handle these view-discrepant sensor data for parallel modal-wise representation learning and automatic cross-modal interaction without additional fusion steps. More importantly, to make full use of these complementary sensor types, we present a novel multi-modal integration strategy by both considering semantic-abundant 2D perspective and geometry-aware 3D sparse neighborhood relations. UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks. It sets a new state-of-the-art performance on the nuScenes benchmark, achieving +1.1 NDS higher for 3D object detection and +12.0 higher mIoU for BEV map segmentation with lower inference latency. Code will be available at https://github.com/Haiyang-W/UniTR .
Abstract:Motion prediction is crucial for autonomous driving systems to understand complex driving scenarios and make informed decisions. However, this task is challenging due to the diverse behaviors of traffic participants and complex environmental contexts. In this paper, we propose Motion TRansformer (MTR) frameworks to address these challenges. The initial MTR framework utilizes a transformer encoder-decoder structure with learnable intention queries, enabling efficient and accurate prediction of future trajectories. By customizing intention queries for distinct motion modalities, MTR improves multimodal motion prediction while reducing reliance on dense goal candidates. The framework comprises two essential processes: global intention localization, identifying the agent's intent to enhance overall efficiency, and local movement refinement, adaptively refining predicted trajectories for improved accuracy. Moreover, we introduce an advanced MTR++ framework, extending the capability of MTR to simultaneously predict multimodal motion for multiple agents. MTR++ incorporates symmetric context modeling and mutually-guided intention querying modules to facilitate future behavior interaction among multiple agents, resulting in scene-compliant future trajectories. Extensive experimental results demonstrate that the MTR framework achieves state-of-the-art performance on the highly-competitive motion prediction benchmarks, while the MTR++ framework surpasses its precursor, exhibiting enhanced performance and efficiency in predicting accurate multimodal future trajectories for multiple agents.
Abstract:3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots. With the commonly used tracking-by-detection paradigm, 3D MOT has made important progress in recent years. However, these methods only use the detection boxes of the current frame to obtain trajectory-box association results, which makes it impossible for the tracker to recover objects missed by the detector. In this paper, we present TrajectoryFormer, a novel point-cloud-based 3D MOT framework. To recover the missed object by detector, we generates multiple trajectory hypotheses with hybrid candidate boxes, including temporally predicted boxes and current-frame detection boxes, for trajectory-box association. The predicted boxes can propagate object's history trajectory information to the current frame and thus the network can tolerate short-term miss detection of the tracked objects. We combine long-term object motion feature and short-term object appearance feature to create per-hypothesis feature embedding, which reduces the computational overhead for spatial-temporal encoding. Additionally, we introduce a Global-Local Interaction Module to conduct information interaction among all hypotheses and models their spatial relations, leading to accurate estimation of hypotheses. Our TrajectoryFormer achieves state-of-the-art performance on the Waymo 3D MOT benchmarks.
Abstract:Masked signal modeling has greatly advanced self-supervised pre-training for language and 2D images. However, it is still not fully explored in 3D scene understanding. Thus, this paper introduces Masked Shape Prediction (MSP), a new framework to conduct masked signal modeling in 3D scenes. MSP uses the essential 3D semantic cue, i.e., geometric shape, as the prediction target for masked points. The context-enhanced shape target consisting of explicit shape context and implicit deep shape feature is proposed to facilitate exploiting contextual cues in shape prediction. Meanwhile, the pre-training architecture in MSP is carefully designed to alleviate the masked shape leakage from point coordinates. Experiments on multiple 3D understanding tasks on both indoor and outdoor datasets demonstrate the effectiveness of MSP in learning good feature representations to consistently boost downstream performance.
Abstract:With the prevalence of multimodal learning, camera-LiDAR fusion has gained popularity in 3D object detection. Although multiple fusion approaches have been proposed, they can be classified into either sparse-only or dense-only fashion based on the feature representation in the fusion module. In this paper, we analyze them in a common taxonomy and thereafter observe two challenges: 1) sparse-only solutions preserve 3D geometric prior and yet lose rich semantic information from the camera, and 2) dense-only alternatives retain the semantic continuity but miss the accurate geometric information from LiDAR. By analyzing these two formulations, we conclude that the information loss is inevitable due to their design scheme. To compensate for the information loss in either manner, we propose Sparse Dense Fusion (SDF), a complementary framework that incorporates both sparse-fusion and dense-fusion modules via the Transformer architecture. Such a simple yet effective sparse-dense fusion structure enriches semantic texture and exploits spatial structure information simultaneously. Through our SDF strategy, we assemble two popular methods with moderate performance and outperform baseline by 4.3% in mAP and 2.5% in NDS, ranking first on the nuScenes benchmark. Extensive ablations demonstrate the effectiveness of our method and empirically align our analysis.
Abstract:Recently, virtual/pseudo-point-based 3D object detection that seamlessly fuses RGB images and LiDAR data by depth completion has gained great attention. However, virtual points generated from an image are very dense, introducing a huge amount of redundant computation during detection. Meanwhile, noises brought by inaccurate depth completion significantly degrade detection precision. This paper proposes a fast yet effective backbone, termed VirConvNet, based on a new operator VirConv (Virtual Sparse Convolution), for virtual-point-based 3D object detection. VirConv consists of two key designs: (1) StVD (Stochastic Voxel Discard) and (2) NRConv (Noise-Resistant Submanifold Convolution). StVD alleviates the computation problem by discarding large amounts of nearby redundant voxels. NRConv tackles the noise problem by encoding voxel features in both 2D image and 3D LiDAR space. By integrating VirConv, we first develop an efficient pipeline VirConv-L based on an early fusion design. Then, we build a high-precision pipeline VirConv-T based on a transformed refinement scheme. Finally, we develop a semi-supervised pipeline VirConv-S based on a pseudo-label framework. On the KITTI car 3D detection test leaderboard, our VirConv-L achieves 85% AP with a fast running speed of 56ms. Our VirConv-T and VirConv-S attains a high-precision of 86.3% and 87.2% AP, and currently rank 2nd and 1st, respectively. The code is available at https://github.com/hailanyi/VirConv.
Abstract:Designing an efficient yet deployment-friendly 3D backbone to handle sparse point clouds is a fundamental problem in 3D object detection. Compared with the customized sparse convolution, the attention mechanism in Transformers is more appropriate for flexibly modeling long-range relationships and is easier to be deployed in real-world applications. However, due to the sparse characteristics of point clouds, it is non-trivial to apply a standard transformer on sparse points. In this paper, we present Dynamic Sparse Voxel Transformer (DSVT), a single-stride window-based voxel Transformer backbone for outdoor 3D object detection. In order to efficiently process sparse points in parallel, we propose Dynamic Sparse Window Attention, which partitions a series of local regions in each window according to its sparsity and then computes the features of all regions in a fully parallel manner. To allow the cross-set connection, we design a rotated set partitioning strategy that alternates between two partitioning configurations in consecutive self-attention layers. To support effective downsampling and better encode geometric information, we also propose an attention-style 3D pooling module on sparse points, which is powerful and deployment-friendly without utilizing any customized CUDA operations. Our model achieves state-of-the-art performance on large-scale Waymo Open Dataset with remarkable gains. More importantly, DSVT can be easily deployed by TensorRT with real-time inference speed (27Hz). Code will be available at \url{https://github.com/Haiyang-W/DSVT}.
Abstract:Although DETR-based 3D detectors can simplify the detection pipeline and achieve direct sparse predictions, their performance still lags behind dense detectors with post-processing for 3D object detection from point clouds. DETRs usually adopt a larger number of queries than GTs (e.g., 300 queries v.s. 40 objects in Waymo) in a scene, which inevitably incur many false positives during inference. In this paper, we propose a simple yet effective sparse 3D detector, named Query Contrast Voxel-DETR (ConQueR), to eliminate the challenging false positives, and achieve more accurate and sparser predictions. We observe that most false positives are highly overlapping in local regions, caused by the lack of explicit supervision to discriminate locally similar queries. We thus propose a Query Contrast mechanism to explicitly enhance queries towards their best-matched GTs over all unmatched query predictions. This is achieved by the construction of positive and negative GT-query pairs for each GT, and a contrastive loss to enhance positive GT-query pairs against negative ones based on feature similarities. ConQueR closes the gap of sparse and dense 3D detectors, and reduces up to ~60% false positives. Our single-frame ConQueR achieves new state-of-the-art (sota) 71.6 mAPH/L2 on the challenging Waymo Open Dataset validation set, outperforming previous sota methods (e.g., PV-RCNN++) by over 2.0 mAPH/L2.