Abstract:Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.
Abstract:Session-based recommendation (SBR) aims to capture dynamic user preferences by analyzing item sequences within individual sessions. However, most existing approaches focus mainly on intra-session item relationships, neglecting the connections between items across different sessions (inter-session relationships), which limits their ability to fully capture complex item interactions. While some methods incorporate inter-session information, they often suffer from high computational costs, leading to longer training times and reduced efficiency. To address these challenges, we propose the CLIP-SBR (Cluster-aware Item Prompt learning for Session-Based Recommendation) framework. CLIP-SBR is composed of two modules: 1) an item relationship mining module that builds a global graph to effectively model both intra- and inter-session relationships, and 2) an item cluster-aware prompt learning module that uses soft prompts to integrate these relationships into SBR models efficiently. We evaluate CLIP-SBR across eight SBR models and three benchmark datasets, consistently demonstrating improved recommendation performance and establishing CLIP-SBR as a robust solution for session-based recommendation tasks.
Abstract:The efficiency and scalability of graph convolution networks (GCNs) in training recommender systems (RecSys) have been persistent concerns, hindering their deployment in real-world applications. This paper presents a critical examination of the necessity of graph convolutions during the training phase and introduces an innovative alternative: the Light Post-Training Graph Ordinary-Differential-Equation (LightGODE). Our investigation reveals that the benefits of GCNs are more pronounced during testing rather than training. Motivated by this, LightGODE utilizes a novel post-training graph convolution method that bypasses the computation-intensive message passing of GCNs and employs a non-parametric continuous graph ordinary-differential-equation (ODE) to dynamically model node representations. This approach drastically reduces training time while achieving fine-grained post-training graph convolution to avoid the distortion of the original training embedding space, termed the embedding discrepancy issue. We validate our model across several real-world datasets of different scales, demonstrating that LightGODE not only outperforms GCN-based models in terms of efficiency and effectiveness but also significantly mitigates the embedding discrepancy commonly associated with deeper graph convolution layers. Our LightGODE challenges the prevailing paradigms in RecSys training and suggests re-evaluating the role of graph convolutions, potentially guiding future developments of efficient large-scale graph-based RecSys.
Abstract:Recommender systems (RecSys) play a vital role in online platforms, offering users personalized suggestions amidst vast information. Graph contrastive learning aims to learn from high-order collaborative filtering signals with unsupervised augmentation on the user-item bipartite graph, which predominantly relies on the multi-task learning framework involving both the pair-wise recommendation loss and the contrastive loss. This decoupled design can cause inconsistent optimization direction from different losses, which leads to longer convergence time and even sub-optimal performance. Besides, the self-supervised contrastive loss falls short in alleviating the data sparsity issue in RecSys as it learns to differentiate users/items from different views without providing extra supervised collaborative filtering signals during augmentations. In this paper, we propose Mixed Supervised Graph Contrastive Learning for Recommendation (MixSGCL) to address these concerns. MixSGCL originally integrates the training of recommendation and unsupervised contrastive losses into a supervised contrastive learning loss to align the two tasks within one optimization direction. To cope with the data sparsity issue, instead unsupervised augmentation, we further propose node-wise and edge-wise mixup to mine more direct supervised collaborative filtering signals based on existing user-item interactions. Extensive experiments on three real-world datasets demonstrate that MixSGCL surpasses state-of-the-art methods, achieving top performance on both accuracy and efficiency. It validates the effectiveness of MixSGCL with our coupled design on supervised graph contrastive learning.
Abstract:Existing datasets for attribute value extraction (AVE) predominantly focus on explicit attribute values while neglecting the implicit ones, lack product images, are often not publicly available, and lack an in-depth human inspection across diverse domains. To address these limitations, we present ImplicitAVE, the first, publicly available multimodal dataset for implicit attribute value extraction. ImplicitAVE, sourced from the MAVE dataset, is carefully curated and expanded to include implicit AVE and multimodality, resulting in a refined dataset of 68k training and 1.6k testing data across five domains. We also explore the application of multimodal large language models (MLLMs) to implicit AVE, establishing a comprehensive benchmark for MLLMs on the ImplicitAVE dataset. Six recent MLLMs with eleven variants are evaluated across diverse settings, revealing that implicit value extraction remains a challenging task for MLLMs. The contributions of this work include the development and release of ImplicitAVE, and the exploration and benchmarking of various MLLMs for implicit AVE, providing valuable insights and potential future research directions. Dataset and code are available at https://github.com/HenryPengZou/ImplicitAVE
Abstract:Graph Convolution Networks (GCNs) are widely considered state-of-the-art for collaborative filtering. Although several GCN-based methods have been proposed and achieved state-of-the-art performance in various tasks, they can be computationally expensive and time-consuming to train if too many layers are created. However, since the linear GCN model can be interpreted as a differential equation, it is possible to transfer it to an ODE problem. This inspired us to address the computational limitations of GCN-based models by designing a simple and efficient NODE-based model that can skip some GCN layers to reach the final state, thus avoiding the need to create many layers. In this work, we propose a Graph Neural Ordinary Differential Equation-based method for Collaborative Filtering (GODE-CF). This method estimates the final embedding by utilizing the information captured by one or two GCN layers. To validate our approach, we conducted experiments on multiple datasets. The results demonstrate that our model outperforms competitive baselines, including GCN-based models and other state-of-the-art CF methods. Notably, our proposed GODE-CF model has several advantages over traditional GCN-based models. It is simple, efficient, and has a fast training time, making it a practical choice for real-world situations.
Abstract:During crisis events, people often use social media platforms such as Twitter to disseminate information about the situation, warnings, advice, and support. Emergency relief organizations leverage such information to acquire timely crisis circumstances and expedite rescue operations. While existing works utilize such information to build models for crisis event analysis, fully-supervised approaches require annotating vast amounts of data and are impractical due to limited response time. On the other hand, semi-supervised models can be biased, performing moderately well for certain classes while performing extremely poorly for others, resulting in substantially negative effects on disaster monitoring and rescue. In this paper, we first study two recent debiasing methods on semi-supervised crisis tweet classification. Then we propose a simple but effective debiasing method, DeCrisisMB, that utilizes a Memory Bank to store and perform equal sampling for generated pseudo-labels from each class at each training iteration. Extensive experiments are conducted to compare different debiasing methods' performance and generalization ability in both in-distribution and out-of-distribution settings. The results demonstrate the superior performance of our proposed method. Our code is available at https://github.com/HenryPengZou/DeCrisisMB.