Abstract:Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability, enabling broad applications across diverse domains such as question answering, image recognition, and multimodal retrieval. This approach fully leverages the potential of large-scale pre-trained models, reducing downstream data requirements and computational costs while enhancing model applicability across various tasks. Graphs, as versatile data structures that capture relationships between entities, play pivotal roles in fields such as social network analysis, recommender systems, and biological graphs. Despite the success of pre-train and prompt learning paradigms in Natural Language Processing (NLP) and Computer Vision (CV), their application in graph domains remains nascent. In graph-structured data, not only do the node and edge features often have disparate distributions, but the topological structures also differ significantly. This diversity in graph data can lead to incompatible patterns or gaps between pre-training and fine-tuning on downstream graphs. We aim to bridge this gap by summarizing methods for alleviating these disparities. This includes exploring prompt design methodologies, comparing related techniques, assessing application scenarios and datasets, and identifying unresolved problems and challenges. This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications, including text-attributed graphs, molecules, proteins, and recommendation systems. Through this extensive review, we provide a foundational understanding of graph prompt learning, aiming to impact not only the graph mining community but also the broader Artificial General Intelligence (AGI) community.
Abstract:The question-answering system for Life science research, which is characterized by the rapid pace of discovery, evolving insights, and complex interactions among knowledge entities, presents unique challenges in maintaining a comprehensive knowledge warehouse and accurate information retrieval. To address these issues, we introduce BioRAG, a novel Retrieval-Augmented Generation (RAG) with the Large Language Models (LLMs) framework. Our approach starts with parsing, indexing, and segmenting an extensive collection of 22 million scientific papers as the basic knowledge, followed by training a specialized embedding model tailored to this domain. Additionally, we enhance the vector retrieval process by incorporating a domain-specific knowledge hierarchy, which aids in modeling the intricate interrelationships among each query and context. For queries requiring the most current information, BioRAG deconstructs the question and employs an iterative retrieval process incorporated with the search engine for step-by-step reasoning. Rigorous experiments have demonstrated that our model outperforms fine-tuned LLM, LLM with search engines, and other scientific RAG frameworks across multiple life science question-answering tasks.
Abstract:Multimodal recommendation systems (MMRS) have received considerable attention from the research community due to their ability to jointly utilize information from user behavior and product images and text. Previous research has two main issues. First, many long-tail items in recommendation systems have limited interaction data, making it difficult to learn comprehensive and informative representations. However, past MMRS studies have overlooked this issue. Secondly, users' modality preferences are crucial to their behavior. However, previous research has primarily focused on learning item modality representations, while user modality representations have remained relatively simplistic.To address these challenges, we propose a novel Graphs and User Modalities Enhancement (GUME) for long-tail multimodal recommendation. Specifically, we first enhance the user-item graph using multimodal similarity between items. This improves the connectivity of long-tail items and helps them learn high-quality representations through graph propagation. Then, we construct two types of user modalities: explicit interaction features and extended interest features. By using the user modality enhancement strategy to maximize mutual information between these two features, we improve the generalization ability of user modality representations. Additionally, we design an alignment strategy for modality data to remove noise from both internal and external perspectives. Extensive experiments on four publicly available datasets demonstrate the effectiveness of our approach.
Abstract:Tabular data optimization methods aim to automatically find an optimal feature transformation process that generates high-value features and improves the performance of downstream machine learning tasks. Current frameworks for automated feature transformation rely on iterative sequence generation tasks, optimizing decision strategies through performance feedback from downstream tasks. However, these approaches fail to effectively utilize historical decision-making experiences and overlook potential relationships among generated features, thus limiting the depth of knowledge extraction. Moreover, the granularity of the decision-making process lacks dynamic backtracking capabilities for individual features, leading to insufficient adaptability when encountering inefficient pathways, adversely affecting overall robustness and exploration efficiency. To address the limitations observed in current automatic feature engineering frameworks, we introduce a novel method that utilizes a feature-state transformation graph to effectively preserve the entire feature transformation journey, where each node represents a specific transformation state. During exploration, three cascading agents iteratively select nodes and idea mathematical operations to generate new transformation states. This strategy leverages the inherent properties of the graph structure, allowing for the preservation and reuse of valuable transformations. It also enables backtracking capabilities through graph pruning techniques, which can rectify inefficient transformation paths. To validate the efficacy and flexibility of our approach, we conducted comprehensive experiments and detailed case studies, demonstrating superior performance in diverse scenarios.
Abstract:In recent years, deep learning on graphs has achieved remarkable success in various domains. However, the reliance on annotated graph data remains a significant bottleneck due to its prohibitive cost and time-intensive nature. To address this challenge, self-supervised learning (SSL) on graphs has gained increasing attention and has made significant progress. SSL enables machine learning models to produce informative representations from unlabeled graph data, reducing the reliance on expensive labeled data. While SSL on graphs has witnessed widespread adoption, one critical component, Graph Contrastive Learning (GCL), has not been thoroughly investigated in the existing literature. Thus, this survey aims to fill this gap by offering a dedicated survey on GCL. We provide a comprehensive overview of the fundamental principles of GCL, including data augmentation strategies, contrastive modes, and contrastive optimization objectives. Furthermore, we explore the extensions of GCL to other aspects of data-efficient graph learning, such as weakly supervised learning, transfer learning, and related scenarios. We also discuss practical applications spanning domains such as drug discovery, genomics analysis, recommender systems, and finally outline the challenges and potential future directions in this field.
Abstract:Zero-shot hashing (ZSH) has shown excellent success owing to its efficiency and generalization in large-scale retrieval scenarios. While considerable success has been achieved, there still exist urgent limitations. Existing works ignore the locality relationships of representations and attributes, which have effective transferability between seeable classes and unseeable classes. Also, the continuous-value attributes are not fully harnessed. In response, we conduct a COMprehensive Attribute Exploration for ZSH, named COMAE, which depicts the relationships from seen classes to unseen ones through three meticulously designed explorations, i.e., point-wise, pair-wise and class-wise consistency constraints. By regressing attributes from the proposed attribute prototype network, COMAE learns the local features that are relevant to the visual attributes. Then COMAE utilizes contrastive learning to comprehensively depict the context of attributes, rather than instance-independent optimization. Finally, the class-wise constraint is designed to cohesively learn the hash code, image representation, and visual attributes more effectively. Experimental results on the popular ZSH datasets demonstrate that COMAE outperforms state-of-the-art hashing techniques, especially in scenarios with a larger number of unseen label classes.
Abstract:The "Graph pre-training and fine-tuning" paradigm has significantly improved Graph Neural Networks(GNNs) by capturing general knowledge without manual annotations for downstream tasks. However, due to the immense gap of data and tasks between the pre-training and fine-tuning stages, the model performance is still limited. Inspired by prompt fine-tuning in Natural Language Processing(NLP), many endeavors have been made to bridge the gap in graph domain. But existing methods simply reformulate the form of fine-tuning tasks to the pre-training ones. With the premise that the pre-training graphs are compatible with the fine-tuning ones, these methods typically operate in transductive setting. In order to generalize graph pre-training to inductive scenario where the fine-tuning graphs might significantly differ from pre-training ones, we propose a novel graph prompt based method called Inductive Graph Alignment Prompt(IGAP). Firstly, we unify the mainstream graph pre-training frameworks and analyze the essence of graph pre-training from graph spectral theory. Then we identify the two sources of the data gap in inductive setting: (i) graph signal gap and (ii) graph structure gap. Based on the insight of graph pre-training, we propose to bridge the graph signal gap and the graph structure gap with learnable prompts in the spectral space. A theoretical analysis ensures the effectiveness of our method. At last, we conduct extensive experiments among nodes classification and graph classification tasks under the transductive, semi-inductive and inductive settings. The results demonstrate that our proposed method can successfully bridge the data gap under different settings.
Abstract:Traffic flow forecasting is a fundamental research issue for transportation planning and management, which serves as a canonical and typical example of spatial-temporal predictions. In recent years, Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) have achieved great success in capturing spatial-temporal correlations for traffic flow forecasting. Yet, two non-ignorable issues haven't been well solved: 1) The message passing in GNNs is immediate, while in reality the spatial message interactions among neighboring nodes can be delayed. The change of traffic flow at one node will take several minutes, i.e., time delay, to influence its connected neighbors. 2) Traffic conditions undergo continuous changes. The prediction frequency for traffic flow forecasting may vary based on specific scenario requirements. Most existing discretized models require retraining for each prediction horizon, restricting their applicability. To tackle the above issues, we propose a neural Spatial-Temporal Delay Differential Equation model, namely STDDE. It includes both delay effects and continuity into a unified delay differential equation framework, which explicitly models the time delay in spatial information propagation. Furthermore, theoretical proofs are provided to show its stability. Then we design a learnable traffic-graph time-delay estimator, which utilizes the continuity of the hidden states to achieve the gradient backward process. Finally, we propose a continuous output module, allowing us to accurately predict traffic flow at various frequencies, which provides more flexibility and adaptability to different scenarios. Extensive experiments show the superiority of the proposed STDDE along with competitive computational efficiency.
Abstract:Graph-structured data, prevalent in domains ranging from social networks to biochemical analysis, serve as the foundation for diverse real-world systems. While graph neural networks demonstrate proficiency in modeling this type of data, their success is often reliant on significant amounts of labeled data, posing a challenge in practical scenarios with limited annotation resources. To tackle this problem, tremendous efforts have been devoted to enhancing graph machine learning performance under low-resource settings by exploring various approaches to minimal supervision. In this paper, we introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier, and present the first survey that summarizes the current progress of DEGL. We initiate by highlighting the challenges inherent in training models with large labeled data, paving the way for our exploration into DEGL. Next, we systematically review recent advances on this topic from several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning. Also, we state promising directions for future research, contributing to the evolution of graph machine learning.
Abstract:Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future.