Abstract:This paper studies the problem of class-imbalanced graph classification, which aims at effectively classifying the categories of graphs in scenarios with imbalanced class distribution. Despite the tremendous success of graph neural networks (GNNs), their modeling ability for imbalanced graph-structured data is inadequate, which typically leads to predictions biased towards the majority classes. Besides, existing class-imbalanced learning methods in visions may overlook the rich graph semantic substructures of the majority classes and excessively emphasize learning from the minority classes. To tackle this issue, this paper proposes a simple yet powerful approach called C$^3$GNN that incorporates the idea of clustering into contrastive learning to enhance class-imbalanced graph classification. Technically, C$^3$GNN clusters graphs from each majority class into multiple subclasses, ensuring they have similar sizes to the minority class, thus alleviating class imbalance. Additionally, it utilizes the Mixup technique to synthesize new samples and enrich the semantic information of each subclass, and leverages supervised contrastive learning to hierarchically learn effective graph representations. In this way, we can not only sufficiently explore the semantic substructures within the majority class but also effectively alleviate excessive focus on the minority class. Extensive experiments on real-world graph benchmark datasets verify the superior performance of our proposed method.
Abstract:Source-free domain adaptation is a crucial machine learning topic, as it contains numerous applications in the real world, particularly with respect to data privacy. Existing approaches predominantly focus on Euclidean data, such as images and videos, while the exploration of non-Euclidean graph data remains scarce. Recent graph neural network (GNN) approaches can suffer from serious performance decline due to domain shift and label scarcity in source-free adaptation scenarios. In this study, we propose a novel method named Graph Diffusion-based Alignment with Jigsaw (GALA), tailored for source-free graph domain adaptation. To achieve domain alignment, GALA employs a graph diffusion model to reconstruct source-style graphs from target data. Specifically, a score-based graph diffusion model is trained using source graphs to learn the generative source styles. Then, we introduce perturbations to target graphs via a stochastic differential equation instead of sampling from a prior, followed by the reverse process to reconstruct source-style graphs. We feed the source-style graphs into an off-the-shelf GNN and introduce class-specific thresholds with curriculum learning, which can generate accurate and unbiased pseudo-labels for target graphs. Moreover, we develop a simple yet effective graph-mixing strategy named graph jigsaw to combine confident graphs and unconfident graphs, which can enhance generalization capabilities and robustness via consistency learning. Extensive experiments on benchmark datasets validate the effectiveness of GALA.
Abstract:In recent years, deep learning on graphs has achieved remarkable success in various domains. However, the reliance on annotated graph data remains a significant bottleneck due to its prohibitive cost and time-intensive nature. To address this challenge, self-supervised learning (SSL) on graphs has gained increasing attention and has made significant progress. SSL enables machine learning models to produce informative representations from unlabeled graph data, reducing the reliance on expensive labeled data. While SSL on graphs has witnessed widespread adoption, one critical component, Graph Contrastive Learning (GCL), has not been thoroughly investigated in the existing literature. Thus, this survey aims to fill this gap by offering a dedicated survey on GCL. We provide a comprehensive overview of the fundamental principles of GCL, including data augmentation strategies, contrastive modes, and contrastive optimization objectives. Furthermore, we explore the extensions of GCL to other aspects of data-efficient graph learning, such as weakly supervised learning, transfer learning, and related scenarios. We also discuss practical applications spanning domains such as drug discovery, genomics analysis, recommender systems, and finally outline the challenges and potential future directions in this field.
Abstract:In this paper, we study semi-supervised graph classification, which aims at accurately predicting the categories of graphs in scenarios with limited labeled graphs and abundant unlabeled graphs. Despite the promising capability of graph neural networks (GNNs), they typically require a large number of costly labeled graphs, while a wealth of unlabeled graphs fail to be effectively utilized. Moreover, GNNs are inherently limited to encoding local neighborhood information using message-passing mechanisms, thus lacking the ability to model higher-order dependencies among nodes. To tackle these challenges, we propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification, which captures graph semantics from the perspective of the hypergraph and the line graph, respectively. Specifically, to better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies beyond pairwise relations. Meanwhile, based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges, thereby better mining the underlying semantic structures. Finally, we develop a relational consistency learning to facilitate knowledge transfer between the two branches and provide better mutual guidance. Extensive experiments on real-world graph datasets verify the effectiveness of the proposed method against existing state-of-the-art methods.
Abstract:Depression-diagnosis-oriented chat aims to guide patients in self-expression to collect key symptoms for depression detection. Recent work focuses on combining task-oriented dialogue and chitchat to simulate the interview-based depression diagnosis. Whereas, these methods can not well capture the changing information, feelings, or symptoms of the patient during dialogues. Moreover, no explicit framework has been explored to guide the dialogue, which results in some useless communications that affect the experience. In this paper, we propose to integrate Psychological State Tracking (POST) within the large language model (LLM) to explicitly guide depression-diagnosis-oriented chat. Specifically, the state is adapted from a psychological theoretical model, which consists of four components, namely Stage, Information, Summary and Next. We fine-tune an LLM model to generate the dynamic psychological state, which is further used to assist response generation at each turn to simulate the psychiatrist. Experimental results on the existing benchmark show that our proposed method boosts the performance of all subtasks in depression-diagnosis-oriented chat.
Abstract:Graph-structured data exhibits universality and widespread applicability across diverse domains, such as social network analysis, biochemistry, financial fraud detection, and network security. Significant strides have been made in leveraging Graph Neural Networks (GNNs) to achieve remarkable success in these areas. However, in real-world scenarios, the training environment for models is often far from ideal, leading to substantial performance degradation of GNN models due to various unfavorable factors, including imbalance in data distribution, the presence of noise in erroneous data, privacy protection of sensitive information, and generalization capability for out-of-distribution (OOD) scenarios. To tackle these issues, substantial efforts have been devoted to improving the performance of GNN models in practical real-world scenarios, as well as enhancing their reliability and robustness. In this paper, we present a comprehensive survey that systematically reviews existing GNN models, focusing on solutions to the four mentioned real-world challenges including imbalance, noise, privacy, and OOD in practical scenarios that many existing reviews have not considered. Specifically, we first highlight the four key challenges faced by existing GNNs, paving the way for our exploration of real-world GNN models. Subsequently, we provide detailed discussions on these four aspects, dissecting how these solutions contribute to enhancing the reliability and robustness of GNN models. Last but not least, we outline promising directions and offer future perspectives in the field.
Abstract:Collaborative Filtering (CF) is a pivotal research area in recommender systems that capitalizes on collaborative similarities between users and items to provide personalized recommendations. With the remarkable achievements of node embedding-based Graph Neural Networks (GNNs), we explore the upper bounds of expressiveness inherent to embedding-based methodologies and tackle the challenges by reframing the CF task as a graph signal processing problem. To this end, we propose PolyCF, a flexible graph signal filter that leverages polynomial graph filters to process interaction signals. PolyCF exhibits the capability to capture spectral features across multiple eigenspaces through a series of Generalized Gram filters and is able to approximate the optimal polynomial response function for recovering missing interactions. A graph optimization objective and a pair-wise ranking objective are jointly used to optimize the parameters of the convolution kernel. Experiments on three widely adopted datasets demonstrate the superiority of PolyCF over current state-of-the-art CF methods. Moreover, comprehensive studies empirically validate each component's efficacy in the proposed PolyCF.
Abstract:Self-supervised graph representation learning has recently shown considerable promise in a range of fields, including bioinformatics and social networks. A large number of graph contrastive learning approaches have shown promising performance for representation learning on graphs, which train models by maximizing agreement between original graphs and their augmented views (i.e., positive views). Unfortunately, these methods usually involve pre-defined augmentation strategies based on the knowledge of human experts. Moreover, these strategies may fail to generate challenging positive views to provide sufficient supervision signals. In this paper, we present a novel approach named Graph Pooling ContraSt (GPS) to address these issues. Motivated by the fact that graph pooling can adaptively coarsen the graph with the removal of redundancy, we rethink graph pooling and leverage it to automatically generate multi-scale positive views with varying emphasis on providing challenging positives and preserving semantics, i.e., strongly-augmented view and weakly-augmented view. Then, we incorporate both views into a joint contrastive learning framework with similarity learning and consistency learning, where our pooling module is adversarially trained with respect to the encoder for adversarial robustness. Experiments on twelve datasets on both graph classification and transfer learning tasks verify the superiority of the proposed method over its counterparts.
Abstract:Intelligent Transportation System (ITS) is vital in improving traffic congestion, reducing traffic accidents, optimizing urban planning, etc. However, due to the complexity of the traffic network, traditional machine learning and statistical methods are relegated to the background. With the advent of the artificial intelligence era, many deep learning frameworks have made remarkable progress in various fields and are now considered effective methods in many areas. As a deep learning method, Graph Neural Networks (GNNs) have emerged as a highly competitive method in the ITS field since 2019 due to their strong ability to model graph-related problems. As a result, more and more scholars pay attention to the applications of GNNs in transportation domains, which have shown excellent performance. However, most of the research in this area is still concentrated on traffic forecasting, while other ITS domains, such as autonomous vehicles and urban planning, still require more attention. This paper aims to review the applications of GNNs in six representative and emerging ITS domains: traffic forecasting, autonomous vehicles, traffic signal control, transportation safety, demand prediction, and parking management. We have reviewed extensive graph-related studies from 2018 to 2023, summarized their methods, features, and contributions, and presented them in informative tables or lists. Finally, we have identified the challenges of applying GNNs to ITS and suggested potential future directions.
Abstract:This paper studies the problem of modeling interacting dynamical systems, which is critical for understanding physical dynamics and biological processes. Recent research predominantly uses geometric graphs to represent these interactions, which are then captured by powerful graph neural networks (GNNs). However, predicting interacting dynamics in challenging scenarios such as out-of-distribution shift and complicated underlying rules remains unsolved. In this paper, we propose a new approach named Graph ODE with factorized prototypes (GOAT) to address the problem. The core of GOAT is to incorporate factorized prototypes from contextual knowledge into a continuous graph ODE framework. Specifically, GOAT employs representation disentanglement and system parameters to extract both object-level and system-level contexts from historical trajectories, which allows us to explicitly model their independent influence and thus enhances the generalization capability under system changes. Then, we integrate these disentangled latent representations into a graph ODE model, which determines a combination of various interacting prototypes for enhanced model expressivity. The entire model is optimized using an end-to-end variational inference framework to maximize the likelihood. Extensive experiments in both in-distribution and out-of-distribution settings validate the superiority of GOAT.