Abstract:Recommender systems are widely used in various real-world applications, but they often encounter the persistent challenge of the user cold-start problem. Cross-domain recommendation (CDR), which leverages user interactions from one domain to improve prediction performance in another, has emerged as a promising solution. However, users with similar preferences in the source domain may exhibit different interests in the target domain. Therefore, directly transferring embeddings may introduce irrelevant source-domain collaborative information. In this paper, we propose a novel graph-based disentangled contrastive learning framework to capture fine-grained user intent and filter out irrelevant collaborative information, thereby avoiding negative transfer. Specifically, for each domain, we use a multi-channel graph encoder to capture diverse user intents. We then construct the affinity graph in the embedding space and perform multi-step random walks to capture high-order user similarity relationships. Treating one domain as the target, we propose a disentangled intent-wise contrastive learning approach, guided by user similarity, to refine the bridging of user intents across domains. Extensive experiments on four benchmark CDR datasets demonstrate that DisCo consistently outperforms existing state-of-the-art baselines, thereby validating the effectiveness of both DisCo and its components.
Abstract:Graph-structured data exhibits universality and widespread applicability across diverse domains, such as social network analysis, biochemistry, financial fraud detection, and network security. Significant strides have been made in leveraging Graph Neural Networks (GNNs) to achieve remarkable success in these areas. However, in real-world scenarios, the training environment for models is often far from ideal, leading to substantial performance degradation of GNN models due to various unfavorable factors, including imbalance in data distribution, the presence of noise in erroneous data, privacy protection of sensitive information, and generalization capability for out-of-distribution (OOD) scenarios. To tackle these issues, substantial efforts have been devoted to improving the performance of GNN models in practical real-world scenarios, as well as enhancing their reliability and robustness. In this paper, we present a comprehensive survey that systematically reviews existing GNN models, focusing on solutions to the four mentioned real-world challenges including imbalance, noise, privacy, and OOD in practical scenarios that many existing reviews have not considered. Specifically, we first highlight the four key challenges faced by existing GNNs, paving the way for our exploration of real-world GNN models. Subsequently, we provide detailed discussions on these four aspects, dissecting how these solutions contribute to enhancing the reliability and robustness of GNN models. Last but not least, we outline promising directions and offer future perspectives in the field.
Abstract:Intelligent Transportation System (ITS) is vital in improving traffic congestion, reducing traffic accidents, optimizing urban planning, etc. However, due to the complexity of the traffic network, traditional machine learning and statistical methods are relegated to the background. With the advent of the artificial intelligence era, many deep learning frameworks have made remarkable progress in various fields and are now considered effective methods in many areas. As a deep learning method, Graph Neural Networks (GNNs) have emerged as a highly competitive method in the ITS field since 2019 due to their strong ability to model graph-related problems. As a result, more and more scholars pay attention to the applications of GNNs in transportation domains, which have shown excellent performance. However, most of the research in this area is still concentrated on traffic forecasting, while other ITS domains, such as autonomous vehicles and urban planning, still require more attention. This paper aims to review the applications of GNNs in six representative and emerging ITS domains: traffic forecasting, autonomous vehicles, traffic signal control, transportation safety, demand prediction, and parking management. We have reviewed extensive graph-related studies from 2018 to 2023, summarized their methods, features, and contributions, and presented them in informative tables or lists. Finally, we have identified the challenges of applying GNNs to ITS and suggested potential future directions.