Abstract:The integration of artificial intelligence into automated penetration testing (AutoPT) has highlighted the necessity of simulation modeling for the training of intelligent agents, due to its cost-efficiency and swift feedback capabilities. Despite the proliferation of AutoPT research, there is a recognized gap in the availability of a unified framework for simulation modeling methods. This paper presents a systematic review and synthesis of existing techniques, introducing MDCPM to categorize studies based on literature objectives, network simulation complexity, dependency of technical and tactical operations, and scenario feedback and variation. To bridge the gap in unified method for multi-dimensional and multi-level simulation modeling, dynamic environment modeling, and the scarcity of public datasets, we introduce AutoPT-Sim, a novel modeling framework that based on policy automation and encompasses the combination of all sub dimensions. AutoPT-Sim offers a comprehensive approach to modeling network environments, attackers, and defenders, transcending the constraints of static modeling and accommodating networks of diverse scales. We publicly release a generated standard network environment dataset and the code of Network Generator. By integrating publicly available datasets flexibly, support is offered for various simulation modeling levels focused on policy automation in MDCPM and the network generator help researchers output customized target network data by adjusting parameters or fine-tuning the network generator.
Abstract:Recommender systems are widely used in various real-world applications, but they often encounter the persistent challenge of the user cold-start problem. Cross-domain recommendation (CDR), which leverages user interactions from one domain to improve prediction performance in another, has emerged as a promising solution. However, users with similar preferences in the source domain may exhibit different interests in the target domain. Therefore, directly transferring embeddings may introduce irrelevant source-domain collaborative information. In this paper, we propose a novel graph-based disentangled contrastive learning framework to capture fine-grained user intent and filter out irrelevant collaborative information, thereby avoiding negative transfer. Specifically, for each domain, we use a multi-channel graph encoder to capture diverse user intents. We then construct the affinity graph in the embedding space and perform multi-step random walks to capture high-order user similarity relationships. Treating one domain as the target, we propose a disentangled intent-wise contrastive learning approach, guided by user similarity, to refine the bridging of user intents across domains. Extensive experiments on four benchmark CDR datasets demonstrate that DisCo consistently outperforms existing state-of-the-art baselines, thereby validating the effectiveness of both DisCo and its components.
Abstract:We introduces Crimson, a system that enhances the strategic reasoning capabilities of Large Language Models (LLMs) within the realm of cybersecurity. By correlating CVEs with MITRE ATT&CK techniques, Crimson advances threat anticipation and strategic defense efforts. Our approach includes defining and evaluating cybersecurity strategic tasks, alongside implementing a comprehensive human-in-the-loop data-synthetic workflow to develop the CVE-to-ATT&CK Mapping (CVEM) dataset. We further enhance LLMs' reasoning abilities through a novel Retrieval-Aware Training (RAT) process and its refined iteration, RAT-R. Our findings demonstrate that an LLM fine-tuned with our techniques, possessing 7 billion parameters, approaches the performance level of GPT-4, showing markedly lower rates of hallucination and errors, and surpassing other models in strategic reasoning tasks. Moreover, domain-specific fine-tuning of embedding models significantly improves performance within cybersecurity contexts, underscoring the efficacy of our methodology. By leveraging Crimson to convert raw vulnerability data into structured and actionable insights, we bolster proactive cybersecurity defenses.