Abstract:The integration of Large Language Models (LLMs) into robotic control, including drones, has the potential to revolutionize autonomous systems. Research studies have demonstrated that LLMs can be leveraged to support robotic operations. However, when facing tasks with complex reasoning, concerns and challenges are raised about the reliability of solutions produced by LLMs. In this paper, we propose a prompt framework with enhanced reasoning to enable reliable LLM-driven control for drones. Our framework consists of novel technical components designed using Guidelines, Skill APIs, Constraints, and Examples, namely GSCE. GSCE is featured by its reliable and constraint-compliant code generation. We performed thorough experiments using GSCE for the control of drones with a wide level of task complexities. Our experiment results demonstrate that GSCE can significantly improve task success rates and completeness compared to baseline approaches, highlighting its potential for reliable LLM-driven autonomous drone systems.
Abstract:The integration of artificial intelligence into automated penetration testing (AutoPT) has highlighted the necessity of simulation modeling for the training of intelligent agents, due to its cost-efficiency and swift feedback capabilities. Despite the proliferation of AutoPT research, there is a recognized gap in the availability of a unified framework for simulation modeling methods. This paper presents a systematic review and synthesis of existing techniques, introducing MDCPM to categorize studies based on literature objectives, network simulation complexity, dependency of technical and tactical operations, and scenario feedback and variation. To bridge the gap in unified method for multi-dimensional and multi-level simulation modeling, dynamic environment modeling, and the scarcity of public datasets, we introduce AutoPT-Sim, a novel modeling framework that based on policy automation and encompasses the combination of all sub dimensions. AutoPT-Sim offers a comprehensive approach to modeling network environments, attackers, and defenders, transcending the constraints of static modeling and accommodating networks of diverse scales. We publicly release a generated standard network environment dataset and the code of Network Generator. By integrating publicly available datasets flexibly, support is offered for various simulation modeling levels focused on policy automation in MDCPM and the network generator help researchers output customized target network data by adjusting parameters or fine-tuning the network generator.
Abstract:Multi-modal models, such as CLIP, have demonstrated strong performance in aligning visual and textual representations, excelling in tasks like image retrieval and zero-shot classification. Despite this success, the mechanisms by which these models utilize training data, particularly the role of memorization, remain unclear. In uni-modal models, both supervised and self-supervised, memorization has been shown to be essential for generalization. However, it is not well understood how these findings would apply to CLIP, which incorporates elements from both supervised learning via captions that provide a supervisory signal similar to labels, and from self-supervised learning via the contrastive objective. To bridge this gap in understanding, we propose a formal definition of memorization in CLIP (CLIPMem) and use it to quantify memorization in CLIP models. Our results indicate that CLIP's memorization behavior falls between the supervised and self-supervised paradigms, with "mis-captioned" samples exhibiting highest levels of memorization. Additionally, we find that the text encoder contributes more to memorization than the image encoder, suggesting that mitigation strategies should focus on the text domain. Building on these insights, we propose multiple strategies to reduce memorization while at the same time improving utility--something that had not been shown before for traditional learning paradigms where reducing memorization typically results in utility decrease.
Abstract:This paper revisits the recently proposed reward centering algorithms including simple reward centering (SRC) and value-based reward centering (VRC), and points out that SRC is indeed the reward centering, while VRC is essentially Bellman error centering (BEC). Based on BEC, we provide the centered fixpoint for tabular value functions, as well as the centered TD fixpoint for linear value function approximation. We design the on-policy CTD algorithm and the off-policy CTDC algorithm, and prove the convergence of both algorithms. Finally, we experimentally validate the stability of our proposed algorithms. Bellman error centering facilitates the extension to various reinforcement learning algorithms.
Abstract:The advancement of mobile agents has opened new opportunities for automating tasks on mobile devices. Training these agents requires large-scale high-quality data, which is costly using human labor. Given the vast number of mobile phone users worldwide, if automated data collection from them is feasible, the resulting data volume and the subsequently trained mobile agents could reach unprecedented levels. Nevertheless, two major challenges arise: (1) extracting high-level and low-level user instructions without involving human and (2) utilizing distributed data from diverse users while preserving privacy. To tackle these challenges, we propose FedMobileAgent, a collaborative framework that trains mobile agents using self-sourced data from diverse users. Specifically, it includes two techniques. First, we propose Auto-Annotation, which enables the automatic collection of high-quality datasets during users' routine phone usage with minimal cost. Second, we introduce adapted aggregation to improve federated training of mobile agents on non-IID user data, by incorporating both episode- and step-level distributions. In distributed settings, FedMobileAgent achieves performance comparable to centralized human-annotated models at less than 0.02\% of the cost, highlighting its potential for real-world applications.
Abstract:Text-guided image-to-image diffusion models excel in translating images based on textual prompts, allowing for precise and creative visual modifications. However, such a powerful technique can be misused for spreading misinformation, infringing on copyrights, and evading content tracing. This motivates us to introduce the task of origin IDentification for text-guided Image-to-image Diffusion models (ID$^2$), aiming to retrieve the original image of a given translated query. A straightforward solution to ID$^2$ involves training a specialized deep embedding model to extract and compare features from both query and reference images. However, due to visual discrepancy across generations produced by different diffusion models, this similarity-based approach fails when training on images from one model and testing on those from another, limiting its effectiveness in real-world applications. To solve this challenge of the proposed ID$^2$ task, we contribute the first dataset and a theoretically guaranteed method, both emphasizing generalizability. The curated dataset, OriPID, contains abundant Origins and guided Prompts, which can be used to train and test potential IDentification models across various diffusion models. In the method section, we first prove the existence of a linear transformation that minimizes the distance between the pre-trained Variational Autoencoder (VAE) embeddings of generated samples and their origins. Subsequently, it is demonstrated that such a simple linear transformation can be generalized across different diffusion models. Experimental results show that the proposed method achieves satisfying generalization performance, significantly surpassing similarity-based methods ($+31.6\%$ mAP), even those with generalization designs.
Abstract:Fast-converging algorithms are a contemporary requirement in reinforcement learning. In the context of linear function approximation, the magnitude of the smallest eigenvalue of the key matrix is a major factor reflecting the convergence speed. Traditional value-based RL algorithms focus on minimizing errors. This paper introduces a variance minimization (VM) approach for value-based RL instead of error minimization. Based on this approach, we proposed two objectives, the Variance of Bellman Error (VBE) and the Variance of Projected Bellman Error (VPBE), and derived the VMTD, VMTDC, and VMETD algorithms. We provided proofs of their convergence and optimal policy invariance of the variance minimization. Experimental studies validate the effectiveness of the proposed algorithms.
Abstract:Video generation models are revolutionizing content creation, with image-to-video models drawing increasing attention due to their enhanced controllability, visual consistency, and practical applications. However, despite their popularity, these models rely on user-provided text and image prompts, and there is currently no dedicated dataset for studying these prompts. In this paper, we introduce TIP-I2V, the first large-scale dataset of over 1.70 million unique user-provided Text and Image Prompts specifically for Image-to-Video generation. Additionally, we provide the corresponding generated videos from five state-of-the-art image-to-video models. We begin by outlining the time-consuming and costly process of curating this large-scale dataset. Next, we compare TIP-I2V to two popular prompt datasets, VidProM (text-to-video) and DiffusionDB (text-to-image), highlighting differences in both basic and semantic information. This dataset enables advancements in image-to-video research. For instance, to develop better models, researchers can use the prompts in TIP-I2V to analyze user preferences and evaluate the multi-dimensional performance of their trained models; and to enhance model safety, they may focus on addressing the misinformation issue caused by image-to-video models. The new research inspired by TIP-I2V and the differences with existing datasets emphasize the importance of a specialized image-to-video prompt dataset. The project is publicly available at https://tip-i2v.github.io.
Abstract:Humanoid robots capable of autonomous operation in diverse environments have long been a goal for roboticists. However, autonomous manipulation by humanoid robots has largely been restricted to one specific scene, primarily due to the difficulty of acquiring generalizable skills. Recent advances in 3D visuomotor policies, such as the 3D Diffusion Policy (DP3), have shown promise in extending these capabilities to wilder environments. However, 3D visuomotor policies often rely on camera calibration and point-cloud segmentation, which present challenges for deployment on mobile robots like humanoids. In this work, we introduce the Improved 3D Diffusion Policy (iDP3), a novel 3D visuomotor policy that eliminates these constraints by leveraging egocentric 3D visual representations. We demonstrate that iDP3 enables a full-sized humanoid robot to autonomously perform skills in diverse real-world scenarios, using only data collected in the lab. Videos are available at: https://humanoid-manipulation.github.io
Abstract:The success of large language models (LLMs) facilitate many parties to fine-tune LLMs on their own private data. However, this practice raises privacy concerns due to the memorization of LLMs. Existing solutions, such as utilizing synthetic data for substitution, struggle to simultaneously improve performance and preserve privacy. They either rely on a local model for generation, resulting in a performance decline, or take advantage of APIs, directly exposing the data to API servers. To address this issue, we propose KnowledgeSG, a novel client-server framework which enhances synthetic data quality and improves model performance while ensuring privacy. We achieve this by learning local knowledge from the private data with differential privacy (DP) and distilling professional knowledge from the server. Additionally, inspired by federated learning, we transmit models rather than data between the client and server to prevent privacy leakage. Extensive experiments in medical and financial domains demonstrate the effectiveness of KnowledgeSG. Our code is now publicly available at https://github.com/wwh0411/KnowledgeSG.