Beijing University of Aeronautics and Astronautics
Abstract:Limited by the context window size of Large Language Models(LLMs), handling various tasks with input tokens exceeding the upper limit has been challenging, whether it is a simple direct retrieval task or a complex multi-hop reasoning task. Although various methods have been proposed to enhance the long-context processing capabilities of LLMs, they either incur substantial post-training costs, or require additional tool modules(e.g.,RAG), or have not shown significant improvement in realistic tasks. Our work observes the correlation between the attention distribution and generated answers across each layer, and establishes the attention allocation aligns with retrieval-augmented capabilities through experiments. Drawing on the above insights, we propose a novel method InfiniRetri that leverages the LLMs's own attention information to enable accurate retrieval across inputs of infinitely length. Our evaluations indicate that InfiniRetri achieves 100% accuracy in the Needle-In-a-Haystack(NIH) test over 1M tokens using a 0.5B parameter model, surpassing other method or larger models and setting a new state-of-the-art(SOTA). Moreover, our method achieves significant performance improvements on real-world benchmarks, with a maximum 288% improvement. In addition, InfiniRetri can be applied to any Transformer-based LLMs without additional training and substantially reduces inference latency and compute overhead in long texts. In summary, our comprehensive studies show InfiniRetri's potential for practical applications and creates a paradigm for retrievaling information using LLMs own capabilities under infinite-length tokens. Code will be released in link.
Abstract:Effective urban traffic management is vital for sustainable city development, relying on intelligent systems with machine learning tasks such as traffic flow prediction and travel time estimation. Traditional approaches usually focus on static road network and trajectory representation learning, and overlook the dynamic nature of traffic states and trajectories, which is crucial for downstream tasks. To address this gap, we propose TRACK, a novel framework to bridge traffic state and trajectory data for dynamic road network and trajectory representation learning. TRACK leverages graph attention networks (GAT) to encode static and spatial road segment features, and introduces a transformer-based model for trajectory representation learning. By incorporating transition probabilities from trajectory data into GAT attention weights, TRACK captures dynamic spatial features of road segments. Meanwhile, TRACK designs a traffic transformer encoder to capture the spatial-temporal dynamics of road segments from traffic state data. To further enhance dynamic representations, TRACK proposes a co-attentional transformer encoder and a trajectory-traffic state matching task. Extensive experiments on real-life urban traffic datasets demonstrate the superiority of TRACK over state-of-the-art baselines. Case studies confirm TRACK's ability to capture spatial-temporal dynamics effectively.
Abstract:Recent years have witnessed the perfect encounter of deep learning and quantitative trading has achieved great success in stock investment. Numerous deep learning-based models have been developed for forecasting stock returns, leveraging the powerful representation capabilities of neural networks to identify patterns and factors influencing stock prices. These models can effectively capture general patterns in the market, such as stock price trends, volume-price relationships, and time variations. However, the impact of special irrationality factors -- such as market sentiment, speculative behavior, market manipulation, and psychological biases -- have not been fully considered in existing deep stock forecasting models due to their relative abstraction as well as lack of explicit labels and data description. To fill this gap, we propose UMI, a Universal multi-level Market Irrationality factor model to enhance stock return forecasting. The UMI model learns factors that can reflect irrational behaviors in market from both individual stock and overall market levels. For the stock-level, UMI construct an estimated rational price for each stock, which is cointegrated with the stock's actual price. The discrepancy between the actual and the rational prices serves as a factor to indicate stock-level irrational events. Additionally, we define market-level irrational behaviors as anomalous synchronous fluctuations of stocks within a market. Using two self-supervised representation learning tasks, i.e., sub-market comparative learning and market synchronism prediction, the UMI model incorporates market-level irrationalities into a market representation vector, which is then used as the market-level irrationality factor.
Abstract:Trajectory data mining is crucial for smart city management. However, collecting large-scale trajectory datasets is challenging due to factors such as commercial conflicts and privacy regulations. Therefore, we urgently need trajectory generation techniques to address this issue. Existing trajectory generation methods rely on the global road network structure of cities. When the road network structure changes, these methods are often not transferable to other cities. In fact, there exist invariant mobility patterns between different cities: 1) People prefer paths with the minimal travel cost; 2) The travel cost of roads has an invariant relationship with the topological features of the road network. Based on the above insight, this paper proposes a Generalizable Trajectory Generation model (GTG). The model consists of three parts: 1) Extracting city-invariant road representation based on Space Syntax method; 2) Cross-city travel cost prediction through disentangled adversarial training; 3) Travel preference learning by shortest path search and preference update. By learning invariant movement patterns, the model is capable of generating trajectories in new cities. Experiments on three datasets demonstrates that our model significantly outperforms existing models in terms of generalization ability.
Abstract:EEG-based fatigue monitoring can effectively reduce the incidence of related traffic accidents. In the past decade, with the advancement of deep learning, convolutional neural networks (CNN) have been increasingly used for EEG signal processing. However, due to the data's non-Euclidean characteristics, existing CNNs may lose important spatial information from EEG, specifically channel correlation. Thus, we propose the node-holistic graph convolutional network (NHGNet), a model that uses graphic convolution to dynamically learn each channel's features. With exact fit attention optimization, the network captures inter-channel correlations through a trainable adjacency matrix. The interpretability is enhanced by revealing critical areas of brain activity and their interrelations in various mental states. In validations on two public datasets, NHGNet outperforms the SOTAs. Specifically, in the intra-subject, NHGNet improved detection accuracy by at least 2.34% and 3.42%, and in the inter-subjects, it improved by at least 2.09% and 15.06%. Visualization research on the model revealed that the central parietal area plays an important role in detecting fatigue levels, whereas the frontal and temporal lobes are essential for maintaining vigilance.
Abstract:The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG.
Abstract:Distributionally robust policy learning aims to find a policy that performs well under the worst-case distributional shift, and yet most existing methods for robust policy learning consider the worst-case joint distribution of the covariate and the outcome. The joint-modeling strategy can be unnecessarily conservative when we have more information on the source of distributional shifts. This paper studiesa more nuanced problem -- robust policy learning under the concept drift, when only the conditional relationship between the outcome and the covariate changes. To this end, we first provide a doubly-robust estimator for evaluating the worst-case average reward of a given policy under a set of perturbed conditional distributions. We show that the policy value estimator enjoys asymptotic normality even if the nuisance parameters are estimated with a slower-than-root-$n$ rate. We then propose a learning algorithm that outputs the policy maximizing the estimated policy value within a given policy class $\Pi$, and show that the sub-optimality gap of the proposed algorithm is of the order $\kappa(\Pi)n^{-1/2}$, with $\kappa(\Pi)$ is the entropy integral of $\Pi$ under the Hamming distance and $n$ is the sample size. A matching lower bound is provided to show the optimality of the rate. The proposed methods are implemented and evaluated in numerical studies, demonstrating substantial improvement compared with existing benchmarks.
Abstract:To effectively manage and utilize massive distributed data at the network edge, Federated Learning (FL) has emerged as a promising edge computing paradigm across data silos. However, FL still faces two challenges: system heterogeneity (i.e., the diversity of hardware resources across edge devices) and statistical heterogeneity (i.e., non-IID data). Although sparsification can extract diverse submodels for diverse clients, most sparse FL works either simply assign submodels with artificially-given rigid rules or prune partial parameters using heuristic strategies, resulting in inflexible sparsification and poor performance. In this work, we propose Learnable Personalized Sparsification for heterogeneous Federated learning (FedLPS), which achieves the learnable customization of heterogeneous sparse models with importance-associated patterns and adaptive ratios to simultaneously tackle system and statistical heterogeneity. Specifically, FedLPS learns the importance of model units on local data representation and further derives an importance-based sparse pattern with minimal heuristics to accurately extract personalized data features in non-IID settings. Furthermore, Prompt Upper Confidence Bound Variance (P-UCBV) is designed to adaptively determine sparse ratios by learning the superimposed effect of diverse device capabilities and non-IID data, aiming at resource self-adaptation with promising accuracy. Extensive experiments show that FedLPS outperforms status quo approaches in accuracy and training costs, which improves accuracy by 1.28%-59.34% while reducing running time by more than 68.80%.
Abstract:Typical dynamic ST data includes trajectory data (representing individual-level mobility) and traffic state data (representing population-level mobility). Traditional studies often treat trajectory and traffic state data as distinct, independent modalities, each tailored to specific tasks within a single modality. However, real-world applications, such as navigation apps, require joint analysis of trajectory and traffic state data. Treating these data types as two separate domains can lead to suboptimal model performance. Although recent advances in ST data pre-training and ST foundation models aim to develop universal models for ST data analysis, most existing models are "multi-task, solo-data modality" (MTSM), meaning they can handle multiple tasks within either trajectory data or traffic state data, but not both simultaneously. To address this gap, this paper introduces BIGCity, the first multi-task, multi-data modality (MTMD) model for ST data analysis. The model targets two key challenges in designing an MTMD ST model: (1) unifying the representations of different ST data modalities, and (2) unifying heterogeneous ST analysis tasks. To overcome the first challenge, BIGCity introduces a novel ST-unit that represents both trajectories and traffic states in a unified format. Additionally, for the second challenge, BIGCity adopts a tunable large model with ST task-oriented prompt, enabling it to perform a range of heterogeneous tasks without the need for fine-tuning. Extensive experiments on real-world datasets demonstrate that BIGCity achieves state-of-the-art performance across 8 tasks, outperforming 18 baselines. To the best of our knowledge, BIGCity is the first model capable of handling both trajectories and traffic states for diverse heterogeneous tasks. Our code are available at https://github.com/bigscity/BIGCity
Abstract:Electronic maps consist of diverse entities, such as points of interest (POIs), road networks, and land parcels, playing a vital role in applications like ITS and LBS. Map entity representation learning (MapRL) generates versatile and reusable data representations, providing essential tools for efficiently managing and utilizing map entity data. Despite the progress in MapRL, two key challenges constrain further development. First, existing research is fragmented, with models classified by the type of map entity, limiting the reusability of techniques across different tasks. Second, the lack of unified benchmarks makes systematic evaluation and comparison of models difficult. To address these challenges, we propose a novel taxonomy for MapRL that organizes models based on functional module-such as encoders, pre-training tasks, and downstream tasks-rather than by entity type. Building on this taxonomy, we present a taxonomy-driven library, VecCity, which offers easy-to-use interfaces for encoding, pre-training, fine-tuning, and evaluation. The library integrates datasets from nine cities and reproduces 21 mainstream MapRL models, establishing the first standardized benchmarks for the field. VecCity also allows users to modify and extend models through modular components, facilitating seamless experimentation. Our comprehensive experiments cover multiple types of map entities and evaluate 21 VecCity pre-built models across various downstream tasks. Experimental results demonstrate the effectiveness of VecCity in streamlining model development and provide insights into the impact of various components on performance. By promoting modular design and reusability, VecCity offers a unified framework to advance research and innovation in MapRL. The code is available at https://github.com/Bigscity-VecCity/VecCity.