Beijing University of Aeronautics and Astronautics
Abstract:Electronic maps consist of diverse entities, such as points of interest (POIs), road networks, and land parcels, playing a vital role in applications like ITS and LBS. Map entity representation learning (MapRL) generates versatile and reusable data representations, providing essential tools for efficiently managing and utilizing map entity data. Despite the progress in MapRL, two key challenges constrain further development. First, existing research is fragmented, with models classified by the type of map entity, limiting the reusability of techniques across different tasks. Second, the lack of unified benchmarks makes systematic evaluation and comparison of models difficult. To address these challenges, we propose a novel taxonomy for MapRL that organizes models based on functional module-such as encoders, pre-training tasks, and downstream tasks-rather than by entity type. Building on this taxonomy, we present a taxonomy-driven library, VecCity, which offers easy-to-use interfaces for encoding, pre-training, fine-tuning, and evaluation. The library integrates datasets from nine cities and reproduces 21 mainstream MapRL models, establishing the first standardized benchmarks for the field. VecCity also allows users to modify and extend models through modular components, facilitating seamless experimentation. Our comprehensive experiments cover multiple types of map entities and evaluate 21 VecCity pre-built models across various downstream tasks. Experimental results demonstrate the effectiveness of VecCity in streamlining model development and provide insights into the impact of various components on performance. By promoting modular design and reusability, VecCity offers a unified framework to advance research and innovation in MapRL. The code is available at https://github.com/Bigscity-VecCity/VecCity.
Abstract:The non-perfect factors of practical photon-counting receiver are recognized as a significant challenge for long-distance photon-limited free-space optical (FSO) communication systems. This paper presents a comprehensive analytical framework for modeling the statistical properties of time-gated single-photon avalanche diode (TG-SPAD) based photon-counting receivers in presence of dead time, non-photon-number-resolving and afterpulsing effect. Drawing upon the non-Markovian characteristic of afterpulsing effect, we formulate a closed-form approximation for the probability mass function (PMF) of photon counts, when high-order pulse amplitude modulation (PAM) is used. Unlike the photon counts from a perfect photon-counting receiver, which adhere to a Poisson arrival process, the photon counts from a practical TG-SPAD based receiver are instead approximated by a binomial distribution. Additionally, by employing the maximum likelihood (ML) criterion, we derive a refined closed-form formula for determining the threshold in high-order PAM, thereby facilitating the development of an analytical model for the symbol error rate (SER). Utilizing this analytical SER model, the system performance is investigated. The numerical results underscore the crucial need to suppress background radiation below the tolerated threshold and to maintain a sufficient number of gates in order to achieve a target SER.
Abstract:This paper proposes a method for estimating and detecting optical signals in practical photon-counting receivers. There are two important aspects of non-perfect photon-counting receivers, namely, (i) dead time which results in blocking loss, and (ii) non-photon-number-resolving, which leads to counting loss during the gate-ON interval. These factors introduce nonlinear distortion to the detected photon counts. The detected photon counts depend not only on the optical intensity but also on the signal waveform, and obey a Poisson binomial process. Using the discrete Fourier transform characteristic function (DFT-CF) method, we derive the probability mass function (PMF) of the detected photon counts. Furthermore, unlike conventional methods that assume an ideal rectangle wave, we propose a novel signal estimation and decision method applicable to arbitrary waveform. We demonstrate that the proposed method achieves superior error performance compared to conventional methods. The proposed algorithm has the potential to become an essential signal processing tool for photon-counting receivers.
Abstract:In this paper, we propose a method for document summarization using auxiliary information. This approach effectively summarizes descriptions related to specific images, tables, and appendices within lengthy texts. Our experiments demonstrate that leveraging high-quality OCR data and initially extracted information from the original text enables efficient summarization of the content related to described objects. Based on these findings, we enhanced popular text generation model models by incorporating additional auxiliary branches to improve summarization performance. Our method achieved top scores of 4.33 and 4.66 in the long caption and short caption tracks, respectively, of the 2024 SciCAP competition, ranking highest in both categories.
Abstract:Large language models (LLMs) are still struggling in aligning with human preference in complex tasks and scenarios. They are prone to overfit into the unexpected patterns or superficial styles in the training data. We conduct an empirical study that only selects the top-10\% most updated parameters in LLMs for alignment training, and see improvements in the convergence process and final performance. It indicates the existence of redundant neurons in LLMs for alignment training. To reduce its influence, we propose a low-redundant alignment method named \textbf{ALLO}, focusing on optimizing the most related neurons with the most useful supervised signals. Concretely, we first identify the neurons that are related to the human preference data by a gradient-based strategy, then identify the alignment-related key tokens by reward models for computing loss. Besides, we also decompose the alignment process into the forgetting and learning stages, where we first forget the tokens with unaligned knowledge and then learn aligned knowledge, by updating different ratios of neurons, respectively. Experimental results on 10 datasets have shown the effectiveness of ALLO. Our code and data are available at \url{https://github.com/RUCAIBox/ALLO}.
Abstract:Ranking algorithms are fundamental to various online platforms across e-commerce sites to content streaming services. Our research addresses the challenge of adaptively ranking items from a candidate pool for heterogeneous users, a key component in personalizing user experience. We develop a user response model that considers diverse user preferences and the varying effects of item positions, aiming to optimize overall user satisfaction with the ranked list. We frame this problem within a contextual bandits framework, with each ranked list as an action. Our approach incorporates an upper confidence bound to adjust predicted user satisfaction scores and selects the ranking action that maximizes these adjusted scores, efficiently solved via maximum weight imperfect matching. We demonstrate that our algorithm achieves a cumulative regret bound of $O(d\sqrt{NKT})$ for ranking $K$ out of $N$ items in a $d$-dimensional context space over $T$ rounds, under the assumption that user responses follow a generalized linear model. This regret alleviates dependence on the ambient action space, whose cardinality grows exponentially with $N$ and $K$ (thus rendering direct application of existing adaptive learning algorithms -- such as UCB or Thompson sampling -- infeasible). Experiments conducted on both simulated and real-world datasets demonstrate our algorithm outperforms the baseline.
Abstract:This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
Abstract:This report provide a detailed description of the method that we proposed in the TRAC-2024 Offline Harm Potential dentification which encloses two sub-tasks. The investigation utilized a rich dataset comprised of social media comments in several Indian languages, annotated with precision by expert judges to capture the nuanced implications for offline context harm. The objective assigned to the participants was to design algorithms capable of accurately assessing the likelihood of harm in given situations and identifying the most likely target(s) of offline harm. Our approach ranked second in two separate tracks, with F1 values of 0.73 and 0.96 respectively. Our method principally involved selecting pretrained models for finetuning, incorporating contrastive learning techniques, and culminating in an ensemble approach for the test set.
Abstract:The electronic map plays a crucial role in geographic information systems, serving various urban managerial scenarios and daily life services. Developing effective Map Entity Representation Learning (MERL) methods is crucial to extracting embedding information from electronic maps and converting map entities into representation vectors for downstream applications. However, existing MERL methods typically focus on one specific category of map entities, such as POIs, road segments, or land parcels, which is insufficient for real-world diverse map-based applications and might lose latent structural and semantic information interacting between entities of different types. Moreover, using representations generated by separate models for different map entities can introduce inconsistencies. Motivated by this, we propose a novel method named HOME-GCL for learning representations of multiple categories of map entities. Our approach utilizes a heterogeneous map entity graph (HOME graph) that integrates both road segments and land parcels into a unified framework. A HOME encoder with parcel-segment joint feature encoding and heterogeneous graph transformer is then deliberately designed to convert segments and parcels into representation vectors. Moreover, we introduce two types of contrastive learning tasks, namely intra-entity and inter-entity tasks, to train the encoder in a self-supervised manner. Extensive experiments on three large-scale datasets covering road segment-based, land parcel-based, and trajectory-based tasks demonstrate the superiority of our approach. To the best of our knowledge, HOME-GCL is the first attempt to jointly learn representations for road segments and land parcels using a unified model.
Abstract:Air quality prediction and modelling plays a pivotal role in public health and environment management, for individuals and authorities to make informed decisions. Although traditional data-driven models have shown promise in this domain, their long-term prediction accuracy can be limited, especially in scenarios with sparse or incomplete data and they often rely on black-box deep learning structures that lack solid physical foundation leading to reduced transparency and interpretability in predictions. To address these limitations, this paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet). Specifically, we leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks. Then, we utilize a graph structure to integrate physics knowledge into a neural network architecture and exploit latent representations to capture spatio-temporal relationships within the air quality data. Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios including different lead time (24h, 48h, 72h), sparse data and sudden change prediction, achieving reduction in prediction errors up to 10%. Moreover, a case study further validates that our model captures underlying physical processes of particle movement and generates accurate predictions with real physical meaning.