Abstract:Collaborative perception in multi-agent system enhances overall perceptual capabilities by facilitating the exchange of complementary information among agents. Current mainstream collaborative perception methods rely on discretized feature maps to conduct fusion, which however, lacks flexibility in extracting and transmitting the informative features and can hardly focus on the informative features during fusion. To address these problems, this paper proposes a novel Anchor-Centric paradigm for Collaborative Object detection (ACCO). It avoids grid precision issues and allows more flexible and efficient anchor-centric communication and fusion. ACCO is composed by three main components: (1) Anchor featuring block (AFB) that targets to generate anchor proposals and projects prepared anchor queries to image features. (2) Anchor confidence generator (ACG) is designed to minimize communication by selecting only the features in the confident anchors to transmit. (3) A local-global fusion module, in which local fusion is anchor alignment-based fusion (LAAF) and global fusion is conducted by spatial-aware cross-attention (SACA). LAAF and SACA run in multi-layers, so agents conduct anchor-centric fusion iteratively to adjust the anchor proposals. Comprehensive experiments are conducted to evaluate ACCO on OPV2V and Dair-V2X datasets, which demonstrate ACCO's superiority in reducing the communication volume, and in improving the perception range and detection performances. Code can be found at: \href{https://github.com/sidiangongyuan/ACCO}{https://github.com/sidiangongyuan/ACCO}.
Abstract:Identifying structures in common forms the basis for networked systems design and optimization. However, real structures represented by graphs are often of varying sizes, leading to the low accuracy of traditional graph classification methods. These graphs are called cross-scale graphs. To overcome this limitation, in this study, we propose GSpect, an advanced spectral graph filtering model for cross-scale graph classification tasks. Compared with other methods, we use graph wavelet neural networks for the convolution layer of the model, which aggregates multi-scale messages to generate graph representations. We design a spectral-pooling layer which aggregates nodes to one node to reduce the cross-scale graphs to the same size. We collect and construct the cross-scale benchmark data set, MSG (Multi Scale Graphs). Experiments reveal that, on open data sets, GSpect improves the performance of classification accuracy by 1.62% on average, and for a maximum of 3.33% on PROTEINS. On MSG, GSpect improves the performance of classification accuracy by 15.55% on average. GSpect fills the gap in cross-scale graph classification studies and has potential to provide assistance in application research like diagnosis of brain disease by predicting the brain network's label and developing new drugs with molecular structures learned from their counterparts in other systems.