Abstract:Identifying structures in common forms the basis for networked systems design and optimization. However, real structures represented by graphs are often of varying sizes, leading to the low accuracy of traditional graph classification methods. These graphs are called cross-scale graphs. To overcome this limitation, in this study, we propose GSpect, an advanced spectral graph filtering model for cross-scale graph classification tasks. Compared with other methods, we use graph wavelet neural networks for the convolution layer of the model, which aggregates multi-scale messages to generate graph representations. We design a spectral-pooling layer which aggregates nodes to one node to reduce the cross-scale graphs to the same size. We collect and construct the cross-scale benchmark data set, MSG (Multi Scale Graphs). Experiments reveal that, on open data sets, GSpect improves the performance of classification accuracy by 1.62% on average, and for a maximum of 3.33% on PROTEINS. On MSG, GSpect improves the performance of classification accuracy by 15.55% on average. GSpect fills the gap in cross-scale graph classification studies and has potential to provide assistance in application research like diagnosis of brain disease by predicting the brain network's label and developing new drugs with molecular structures learned from their counterparts in other systems.
Abstract:The personalized bundle generation problem, which aims to create a preferred bundle for user from numerous candidate items, receives increasing attention in recommendation. However, existing works ignore the order-invariant nature of the bundle and adopt sequential modeling methods as the solution, which might introduce inductive bias and cause a large latency in prediction. To address this problem, we propose to perform the bundle generation via non-autoregressive mechanism and design a novel encoder-decoder framework named BundleNAT, which can effectively output the targeted bundle in one-shot without relying on any inherent order. In detail, instead of learning sequential dependency, we propose to adopt pre-training techniques and graph neural network to fully embed user-based preference and item-based compatibility information, and use a self-attention based encoder to further extract global dependency pattern. We then design a permutation-equivariant decoding architecture that is able to directly output the desired bundle in a one-shot manner. Experiments on three real-world datasets from Youshu and Netease show the proposed BundleNAT significantly outperforms the current state-of-the-art methods in average by up to 35.92%, 10.97% and 23.67% absolute improvements in Precision, Precision+, and Recall, respectively.
Abstract:Heterogeneous information network (HIN), which contains rich semantics depicted by meta-paths, has become a powerful tool to alleviate data sparsity in recommender systems. Existing HIN-based recommendations hold the data centralized storage assumption and conduct centralized model training. However, the real-world data is often stored in a distributed manner for privacy concerns, resulting in the failure of centralized HIN-based recommendations. In this paper, we suggest the HIN is partitioned into private HINs stored in the client side and shared HINs in the server. Following this setting, we propose a federated heterogeneous graph neural network (FedHGNN) based framework, which can collaboratively train a recommendation model on distributed HINs without leaking user privacy. Specifically, we first formalize the privacy definition in the light of differential privacy for HIN-based federated recommendation, which aims to protect user-item interactions of private HIN as well as user's high-order patterns from shared HINs. To recover the broken meta-path based semantics caused by distributed data storage and satisfy the proposed privacy, we elaborately design a semantic-preserving user interactions publishing method, which locally perturbs user's high-order patterns as well as related user-item interactions for publishing. After that, we propose a HGNN model for recommendation, which conducts node- and semantic-level aggregations to capture recovered semantics. Extensive experiments on three datasets demonstrate our model outperforms existing methods by a large margin (up to 34% in HR@10 and 42% in NDCG@10) under an acceptable privacy budget.