Abstract:Tabular data is a fundamental form of data structure. The evolution of table analysis tools reflects humanity's continuous progress in data acquisition, management, and processing. The dynamic changes in table columns arise from technological advancements, changing needs, data integration, etc. However, the standard process of training AI models on tables with fixed columns and then performing inference is not suitable for handling dynamically changed tables. Therefore, new methods are needed for efficiently handling such tables in an unsupervised manner. In this paper, we introduce a new task, Tabular Incremental Inference (TabII), which aims to enable trained models to incorporate new columns during the inference stage, enhancing the practicality of AI models in scenarios where tables are dynamically changed. Furthermore, we demonstrate that this new task can be framed as an optimization problem based on the information bottleneck theory, which emphasizes that the key to an ideal tabular incremental inference approach lies in minimizing mutual information between tabular data and representation while maximizing between representation and task labels. Under this guidance, we design a TabII method with Large Language Model placeholders and Pretrained TabAdapter to provide external knowledge and Incremental Sample Condensation blocks to condense the task-relevant information given by incremental column attributes. Experimental results across eight public datasets show that TabII effectively utilizes incremental attributes, achieving state-of-the-art performance.
Abstract:The rapid rise of autonomous AI systems and advancements in agent capabilities are introducing new risks due to reduced oversight of real-world interactions. Yet agent testing remains nascent and is still a developing science. As AI agents begin to be deployed globally, it is important that they handle different languages and cultures accurately and securely. To address this, participants from The International Network for Advanced AI Measurement, Evaluation and Science, including representatives from Singapore, Japan, Australia, Canada, the European Commission, France, Kenya, South Korea, and the United Kingdom have come together to align approaches to agentic evaluations. This is the third exercise, building on insights from two earlier joint testing exercises conducted by the Network in November 2024 and February 2025. The objective is to further refine best practices for testing advanced AI systems. The exercise was split into two strands: (1) common risks, including leakage of sensitive information and fraud, led by Singapore AISI; and (2) cybersecurity, led by UK AISI. A mix of open and closed-weight models were evaluated against tasks from various public agentic benchmarks. Given the nascency of agentic testing, our primary focus was on understanding methodological issues in conducting such tests, rather than examining test results or model capabilities. This collaboration marks an important step forward as participants work together to advance the science of agentic evaluations.
Abstract:Multimodal Large Language Models are increasingly applied to biomedical imaging, yet scientific reasoning for microscopy remains limited by the scarcity of large-scale, high-quality training data. We introduce MicroVQA++, a three-stage, large-scale and high-quality microscopy VQA corpus derived from the BIOMEDICA archive. Stage one bootstraps supervision from expert-validated figure-caption pairs sourced from peer-reviewed articles. Stage two applies HiCQA-Graph, a novel heterogeneous graph over images, captions, and QAs that fuses NLI-based textual entailment, CLIP-based vision-language alignment, and agent signals to identify and filter inconsistent samples. Stage three uses a MultiModal Large Language Model (MLLM) agent to generate multiple-choice questions (MCQ) followed by human screening. The resulting release comprises a large training split and a human-checked test split whose Bloom's level hard-sample distribution exceeds the MicroVQA benchmark. Our work delivers (i) a quality-controlled dataset that couples expert literature with graph-based filtering and human refinement; (ii) HiCQA-Graph, the first graph that jointly models (image, caption, QA) for cross-modal consistency filtering; (iii) evidence that careful data construction enables 4B-scale MLLMs to reach competitive microscopy reasoning performance (e.g., GPT-5) and achieve state-of-the-art performance among open-source MLLMs. Code and dataset will be released after the review process concludes.




Abstract:Designing suitable reward functions for numerous interacting intelligent agents is challenging in real-world applications. Inverse reinforcement learning (IRL) in mean field games (MFGs) offers a practical framework to infer reward functions from expert demonstrations. While promising, the assumption of agent homogeneity limits the capability of existing methods to handle demonstrations with heterogeneous and unknown objectives, which are common in practice. To this end, we propose a deep latent variable MFG model and an associated IRL method. Critically, our method can infer rewards from different yet structurally similar tasks without prior knowledge about underlying contexts or modifying the MFG model itself. Our experiments, conducted on simulated scenarios and a real-world spatial taxi-ride pricing problem, demonstrate the superiority of our approach over state-of-the-art IRL methods in MFGs.
Abstract:Accurate segmentation of regions of interest in biomedical images holds substantial value in image analysis. Although several foundation models for biomedical segmentation have currently achieved excellent performance on certain datasets, they typically demonstrate sub-optimal performance on unseen domain data. We owe the deficiency to lack of vision-language knowledge before segmentation. Multimodal Large Language Models (MLLMs) bring outstanding understanding and reasoning capabilities to multimodal tasks, which inspires us to leverage MLLMs to inject Vision-Language Knowledge (VLK), thereby enabling vision models to demonstrate superior generalization capabilities on cross-domain datasets. In this paper, we propose using MLLMs to guide SAM in learning microscopy crose-domain data, unifying Segment Anything in Microscopy, named uLLSAM. Specifically, we propose the Vision-Language Semantic Alignment (VLSA) module, which injects VLK into Segment Anything Model (SAM). We find that after SAM receives global VLK prompts, its performance improves significantly, but there are deficiencies in boundary contour perception. Therefore, we further propose Semantic Boundary Regularization (SBR) to prompt SAM. Our method achieves performance improvements of 7.71% in Dice and 12.10% in SA across 9 in-domain microscopy datasets, achieving state-of-the-art performance. Our method also demonstrates improvements of 6.79% in Dice and 10.08% in SA across 10 out-ofdomain datasets, exhibiting strong generalization capabilities. Code is available at https://github.com/ieellee/uLLSAM.
Abstract:Medical vision-language models (VLMs) have shown promise as clinical assistants across various medical fields. However, specialized dermatology VLM capable of delivering professional and detailed diagnostic analysis remains underdeveloped, primarily due to less specialized text descriptions in current dermatology multimodal datasets. To address this issue, we propose MM-Skin, the first large-scale multimodal dermatology dataset that encompasses 3 imaging modalities, including clinical, dermoscopic, and pathological and nearly 10k high-quality image-text pairs collected from professional textbooks. In addition, we generate over 27k diverse, instruction-following vision question answering (VQA) samples (9 times the size of current largest dermatology VQA dataset). Leveraging public datasets and MM-Skin, we developed SkinVL, a dermatology-specific VLM designed for precise and nuanced skin disease interpretation. Comprehensive benchmark evaluations of SkinVL on VQA, supervised fine-tuning (SFT) and zero-shot classification tasks across 8 datasets, reveal its exceptional performance for skin diseases in comparison to both general and medical VLM models. The introduction of MM-Skin and SkinVL offers a meaningful contribution to advancing the development of clinical dermatology VLM assistants. MM-Skin is available at https://github.com/ZwQ803/MM-Skin




Abstract:Current scaling laws for visual AI models focus predominantly on large-scale pretraining, leaving a critical gap in understanding how performance scales for data-constrained downstream tasks. To address this limitation, this paper establishes the first practical framework for data-efficient scaling laws in visual transfer learning, addressing two fundamental questions: 1) How do scaling behaviors shift when downstream tasks operate with limited data? 2) What governs the efficacy of knowledge distillation under such constraints? Through systematic analysis of vision tasks across data regimes (1K-1M samples), we propose the distillation boundary theory, revealing a critical turning point in distillation efficiency: 1) Distillation superiority: In data-scarce conditions, distilled models significantly outperform their non-distillation counterparts, efficiently leveraging inherited knowledge to compensate for limited training samples. 2) Pre-training dominance: As pre-training data increases beyond a critical threshold, non-distilled models gradually surpass distilled versions, suggesting diminishing returns from knowledge inheritance when sufficient task-specific data becomes available. Empirical validation across various model scales (2.5M to 38M parameters) and data volumes demonstrate these performance inflection points, with error difference curves transitioning from positive to negative values at critical data thresholds, confirming our theoretical predictions. This work redefines scaling laws for data-limited regimes, bridging the knowledge gap between large-scale pretraining and practical downstream adaptation, addressing a critical barrier to understanding vision model scaling behaviors and optimizing computational resource allocation.




Abstract:As transfer learning models and datasets grow larger, efficient adaptation and storage optimization have become critical needs. Coreset selection addresses these challenges by identifying and retaining the most informative samples, constructing a compact subset for target domain training. However, current methods primarily rely on instance-level difficulty assessments, overlooking crucial category-level characteristics and consequently under-representing minority classes. To overcome this limitation, we propose Non-Uniform Class-Wise Coreset Selection (NUCS), a novel framework that integrates both class-level and instance-level criteria. NUCS automatically allocates data selection budgets for each class based on intrinsic category difficulty and adaptively selects samples within optimal difficulty ranges. By explicitly incorporating category-specific insights, our approach achieves a more balanced and representative coreset, addressing key shortcomings of prior methods. Comprehensive theoretical analysis validates the rationale behind adaptive budget allocation and sample selection, while extensive experiments across 14 diverse datasets and model architectures demonstrate NUCS's consistent improvements over state-of-the-art methods, achieving superior accuracy and computational efficiency. Notably, on CIFAR100 and Food101, NUCS matches full-data training accuracy while retaining just 30% of samples and reducing computation time by 60%. Our work highlights the importance of characterizing category difficulty in coreset selection, offering a robust and data-efficient solution for transfer learning.
Abstract:In federated graph learning (FGL), a complete graph is divided into multiple subgraphs stored in each client due to privacy concerns, and all clients jointly train a global graph model by only transmitting model parameters. A pain point of FGL is the heterogeneity problem, where nodes or structures present non-IID properties among clients (e.g., different node label distributions), dramatically undermining the convergence and performance of FGL. To address this, existing efforts focus on design strategies at the model level, i.e., they design models to extract common knowledge to mitigate heterogeneity. However, these model-level strategies fail to fundamentally address the heterogeneity problem as the model needs to be designed from scratch when transferring to other tasks. Motivated by large language models (LLMs) having achieved remarkable success, we aim to utilize LLMs to fully understand and augment local text-attributed graphs, to address data heterogeneity at the data level. In this paper, we propose a general framework LLM4FGL that innovatively decomposes the task of LLM for FGL into two sub-tasks theoretically. Specifically, for each client, it first utilizes the LLM to generate missing neighbors and then infers connections between generated nodes and raw nodes. To improve the quality of generated nodes, we design a novel federated generation-and-reflection mechanism for LLMs, without the need to modify the parameters of the LLM but relying solely on the collective feedback from all clients. After neighbor generation, all the clients utilize a pre-trained edge predictor to infer the missing edges. Furthermore, our framework can seamlessly integrate as a plug-in with existing FGL methods. Experiments on three real-world datasets demonstrate the superiority of our method compared to advanced baselines.




Abstract:To preserve user privacy in recommender systems, federated recommendation (FR) based on federated learning (FL) emerges, keeping the personal data on the local client and updating a model collaboratively. Unlike FL, FR has a unique sparse aggregation mechanism, where the embedding of each item is updated by only partial clients, instead of full clients in a dense aggregation of general FL. Recently, as an essential principle of FL, model security has received increasing attention, especially for Byzantine attacks, where malicious clients can send arbitrary updates. The problem of exploring the Byzantine robustness of FR is particularly critical since in the domains applying FR, e.g., e-commerce, malicious clients can be injected easily by registering new accounts. However, existing Byzantine works neglect the unique sparse aggregation of FR, making them unsuitable for our problem. Thus, we make the first effort to investigate Byzantine attacks on FR from the perspective of sparse aggregation, which is non-trivial: it is not clear how to define Byzantine robustness under sparse aggregations and design Byzantine attacks under limited knowledge/capability. In this paper, we reformulate the Byzantine robustness under sparse aggregation by defining the aggregation for a single item as the smallest execution unit. Then we propose a family of effective attack strategies, named Spattack, which exploit the vulnerability in sparse aggregation and are categorized along the adversary's knowledge and capability. Extensive experimental results demonstrate that Spattack can effectively prevent convergence and even break down defenses under a few malicious clients, raising alarms for securing FR systems.