Abstract:With the great popularity of Graph Neural Networks (GNNs), their robustness to adversarial topology attacks has received significant attention. Although many attack methods have been proposed, they mainly focus on fixed-budget attacks, aiming at finding the most adversarial perturbations within a fixed budget for target node. However, considering the varied robustness of each node, there is an inevitable dilemma caused by the fixed budget, i.e., no successful perturbation is found when the budget is relatively small, while if it is too large, the yielding redundant perturbations will hurt the invisibility. To break this dilemma, we propose a new type of topology attack, named minimum-budget topology attack, aiming to adaptively find the minimum perturbation sufficient for a successful attack on each node. To this end, we propose an attack model, named MiBTack, based on a dynamic projected gradient descent algorithm, which can effectively solve the involving non-convex constraint optimization on discrete topology. Extensive results on three GNNs and four real-world datasets show that MiBTack can successfully lead all target nodes misclassified with the minimum perturbation edges. Moreover, the obtained minimum budget can be used to measure node robustness, so we can explore the relationships of robustness, topology, and uncertainty for nodes, which is beyond what the current fixed-budget topology attacks can offer.
Abstract:Relational extraction is one of the basic tasks related to information extraction in the field of natural language processing, and is an important link and core task in the fields of information extraction, natural language understanding, and information retrieval. None of the existing relation extraction methods can effectively solve the problem of triple overlap. The CasAug model proposed in this paper based on the CasRel framework combined with the semantic enhancement mechanism can solve this problem to a certain extent. The CasAug model enhances the semantics of the identified possible subjects by adding a semantic enhancement mechanism, First, based on the semantic coding of possible subjects, pre-classify the possible subjects, and then combine the subject lexicon to calculate the semantic similarity to obtain the similar vocabulary of possible subjects. According to the similar vocabulary obtained, each word in different relations is calculated through the attention mechanism. For the contribution of the possible subject, finally combine the relationship pre-classification results to weight the enhanced semantics of each relationship to find the enhanced semantics of the possible subject, and send the enhanced semantics combined with the possible subject to the object and relationship extraction module. Complete the final relation triplet extraction. The experimental results show that, compared with the baseline model, the CasAug model proposed in this paper has improved the effect of relation extraction, and CasAug's ability to deal with overlapping problems and extract multiple relations is also better than the baseline model, indicating that the semantic enhancement mechanism proposed in this paper It can further reduce the judgment of redundant relations and alleviate the problem of triple overlap.
Abstract:We propose a straightforward solution for detecting scarce topics in unbalanced short-text datasets. Our approach, named CWUTM (Topic model based on co-occurrence word networks for unbalanced short text datasets), Our approach addresses the challenge of sparse and unbalanced short text topics by mitigating the effects of incidental word co-occurrence. This allows our model to prioritize the identification of scarce topics (Low-frequency topics). Unlike previous methods, CWUTM leverages co-occurrence word networks to capture the topic distribution of each word, and we enhanced the sensitivity in identifying scarce topics by redefining the calculation of node activity and normalizing the representation of both scarce and abundant topics to some extent. Moreover, CWUTM adopts Gibbs sampling, similar to LDA, making it easily adaptable to various application scenarios. Our extensive experimental validation on unbalanced short-text datasets demonstrates the superiority of CWUTM compared to baseline approaches in discovering scarce topics. According to the experimental results the proposed model is effective in early and accurate detection of emerging topics or unexpected events on social platforms.
Abstract:Epidemic decision-making can effectively help the government to comprehensively consider public security and economic development to respond to public health and safety emergencies. Epidemic decision-making can effectively help the government to comprehensively consider public security and economic development to respond to public health and safety emergencies. Some studies have shown that intensive learning can effectively help the government to make epidemic decision, thus achieving the balance between health security and economic development. Some studies have shown that intensive learning can effectively help the government to make epidemic decision, thus achieving the balance between health security and economic development. However, epidemic data often has the characteristics of limited samples and high privacy. However, epidemic data often has the characteristics of limited samples and high privacy. This model can combine the epidemic situation data of various provinces for cooperative training to use as an enhanced learning model for epidemic situation decision, while protecting the privacy of data. The experiment shows that the enhanced federated learning can obtain more optimized performance and return than the enhanced learning, and the enhanced federated learning can also accelerate the training convergence speed of the training model. accelerate the training convergence speed of the client. At the same time, through the experimental comparison, A2C is the most suitable reinforcement learning model for the epidemic situation decision-making. learning model for the epidemic situation decision-making scenario, followed by the PPO model, and the performance of DDPG is unsatisfactory.
Abstract:Federated learning enables a collaborative training and optimization of global models among a group of devices without sharing local data samples. However, the heterogeneity of data in federated learning can lead to unfair representation of the global model across different devices. To address the fairness issue in federated learning, we propose a dynamic q fairness federated learning algorithm with reinforcement learning, called DQFFL. DQFFL aims to mitigate the discrepancies in device aggregation and enhance the fairness of treatment for all groups involved in federated learning. To quantify fairness, DQFFL leverages the performance of the global federated model on each device and incorporates {\alpha}-fairness to transform the preservation of fairness during federated aggregation into the distribution of client weights in the aggregation process. Considering the sensitivity of parameters in measuring fairness, we propose to utilize reinforcement learning for dynamic parameters during aggregation. Experimental results demonstrate that our DQFFL outperforms the state-of-the-art methods in terms of overall performance, fairness and convergence speed.
Abstract:Heterogeneous information network (HIN), which contains rich semantics depicted by meta-paths, has become a powerful tool to alleviate data sparsity in recommender systems. Existing HIN-based recommendations hold the data centralized storage assumption and conduct centralized model training. However, the real-world data is often stored in a distributed manner for privacy concerns, resulting in the failure of centralized HIN-based recommendations. In this paper, we suggest the HIN is partitioned into private HINs stored in the client side and shared HINs in the server. Following this setting, we propose a federated heterogeneous graph neural network (FedHGNN) based framework, which can collaboratively train a recommendation model on distributed HINs without leaking user privacy. Specifically, we first formalize the privacy definition in the light of differential privacy for HIN-based federated recommendation, which aims to protect user-item interactions of private HIN as well as user's high-order patterns from shared HINs. To recover the broken meta-path based semantics caused by distributed data storage and satisfy the proposed privacy, we elaborately design a semantic-preserving user interactions publishing method, which locally perturbs user's high-order patterns as well as related user-item interactions for publishing. After that, we propose a HGNN model for recommendation, which conducts node- and semantic-level aggregations to capture recovered semantics. Extensive experiments on three datasets demonstrate our model outperforms existing methods by a large margin (up to 34% in HR@10 and 42% in NDCG@10) under an acceptable privacy budget.
Abstract:Federated learning is a distributed machine learning technology, which realizes the balance between data privacy protection and data sharing computing. To protect data privacy, feder-ated learning learns shared models by locally executing distributed training on participating devices and aggregating local models into global models. There is a problem in federated learning, that is, the negative impact caused by the non-independent and identical distribu-tion of data across different user terminals. In order to alleviate this problem, this paper pro-poses a strengthened federation aggregation method based on adaptive OPTICS clustering. Specifically, this method perceives the clustering environment as a Markov decision process, and models the adjustment process of parameter search direction, so as to find the best clus-tering parameters to achieve the best federated aggregation method. The core contribution of this paper is to propose an adaptive OPTICS clustering algorithm for federated learning. The algorithm combines OPTICS clustering and adaptive learning technology, and can effective-ly deal with the problem of non-independent and identically distributed data across different user terminals. By perceiving the clustering environment as a Markov decision process, the goal is to find the best parameters of the OPTICS cluster without artificial assistance, so as to obtain the best federated aggregation method and achieve better performance. The reliability and practicability of this method have been verified on the experimental data, and its effec-tiveness and superiority have been proved.
Abstract:The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society. Securing cyberspace has become an utmost concern for organizations and governments. Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities. In recent years, with the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance. It is imperative to summarize existing graph-based cybersecurity solutions to provide a guide for future studies. Therefore, as a key contribution of this paper, we provide a comprehensive review of graph mining for cybersecurity, including an overview of cybersecurity tasks, the typical graph mining techniques, and the general process of applying them to cybersecurity, as well as various solutions for different cybersecurity tasks. For each task, we probe into relevant methods and highlight the graph types, graph approaches, and task levels in their modeling. Furthermore, we collect open datasets and toolkits for graph-based cybersecurity. Finally, we outlook the potential directions of this field for future research.
Abstract:Technology videos contain rich multi-modal information. In cross-modal information search, the data features of different modalities cannot be compared directly, so the semantic gap between different modalities is a key problem that needs to be solved. To address the above problems, this paper proposes a novel Feature Fusion based Adversarial Cross-modal Retrieval method (FFACR) to achieve text-to-video matching, ranking and searching. The proposed method uses the framework of adversarial learning to construct a video multimodal feature fusion network and a feature mapping network as generator, a modality discrimination network as discriminator. Multi-modal features of videos are obtained by the feature fusion network. The feature mapping network projects multi-modal features into the same semantic space based on semantics and similarity. The modality discrimination network is responsible for determining the original modality of features. Generator and discriminator are trained alternately based on adversarial learning, so that the data obtained by the feature mapping network is semantically consistent with the original data and the modal features are eliminated, and finally the similarity is used to rank and obtain the search results in the semantic space. Experimental results demonstrate that the proposed method performs better in text-to-video search than other existing methods, and validate the effectiveness of the method on the self-built datasets of technology videos.
Abstract:The relation triples extraction method based on table filling can address the issues of relation overlap and bias propagation. However, most of them only establish separate table features for each relationship, which ignores the implicit relationship between different entity pairs and different relationship features. Therefore, a feature reasoning relational triple extraction method based on table filling for technological patents is proposed to explore the integration of entity recognition and entity relationship, and to extract entity relationship triples from multi-source scientific and technological patents data. Compared with the previous methods, the method we proposed for relational triple extraction has the following advantages: 1) The table filling method that saves more running space enhances the speed and efficiency of the model. 2) Based on the features of existing token pairs and table relations, reasoning the implicit relationship features, and improve the accuracy of triple extraction. On five benchmark datasets, we evaluated the model we suggested. The result suggest that our model is advanced and effective, and it performed well on most of these datasets.