Abstract:The question-answering system for Life science research, which is characterized by the rapid pace of discovery, evolving insights, and complex interactions among knowledge entities, presents unique challenges in maintaining a comprehensive knowledge warehouse and accurate information retrieval. To address these issues, we introduce BioRAG, a novel Retrieval-Augmented Generation (RAG) with the Large Language Models (LLMs) framework. Our approach starts with parsing, indexing, and segmenting an extensive collection of 22 million scientific papers as the basic knowledge, followed by training a specialized embedding model tailored to this domain. Additionally, we enhance the vector retrieval process by incorporating a domain-specific knowledge hierarchy, which aids in modeling the intricate interrelationships among each query and context. For queries requiring the most current information, BioRAG deconstructs the question and employs an iterative retrieval process incorporated with the search engine for step-by-step reasoning. Rigorous experiments have demonstrated that our model outperforms fine-tuned LLM, LLM with search engines, and other scientific RAG frameworks across multiple life science question-answering tasks.
Abstract:Although diffusion models can generate high-quality human images, their applications are limited by the instability in generating hands with correct structures. Some previous works mitigate the problem by considering hand structure yet struggle to maintain style consistency between refined malformed hands and other image regions. In this paper, we aim to solve the problem of inconsistency regarding hand structure and style. We propose a conditional diffusion-based framework RHanDS to refine the hand region with the help of decoupled structure and style guidance. Specifically, the structure guidance is the hand mesh reconstructed from the malformed hand, serving to correct the hand structure. The style guidance is a hand image, e.g., the malformed hand itself, and is employed to furnish the style reference for hand refining. In order to suppress the structure leakage when referencing hand style and effectively utilize hand data to improve the capability of the model, we build a multi-style hand dataset and introduce a twostage training strategy. In the first stage, we use paired hand images for training to generate hands with the same style as the reference. In the second stage, various hand images generated based on the human mesh are used for training to enable the model to gain control over the hand structure. We evaluate our method and counterparts on the test dataset of the proposed multi-style hand dataset. The experimental results show that RHanDS can effectively refine hands structure- and style- correctly compared with previous methods. The codes and datasets will be available soon.
Abstract:Noisy label Facial Expression Recognition (FER) is more challenging than traditional noisy label classification tasks due to the inter-class similarity and the annotation ambiguity. Recent works mainly tackle this problem by filtering out large-loss samples. In this paper, we explore dealing with noisy labels from a new feature-learning perspective. We find that FER models remember noisy samples by focusing on a part of the features that can be considered related to the noisy labels instead of learning from the whole features that lead to the latent truth. Inspired by that, we propose a novel Erasing Attention Consistency (EAC) method to suppress the noisy samples during the training process automatically. Specifically, we first utilize the flip semantic consistency of facial images to design an imbalanced framework. We then randomly erase input images and use flip attention consistency to prevent the model from focusing on a part of the features. EAC significantly outperforms state-of-the-art noisy label FER methods and generalizes well to other tasks with a large number of classes like CIFAR100 and Tiny-ImageNet. The code is available at https://github.com/zyh-uaiaaaa/Erasing-Attention-Consistency.
Abstract:As more and more people begin to wear masks due to current COVID-19 pandemic, existing face recognition systems may encounter severe performance degradation when recognizing masked faces. To figure out the impact of masks on face recognition model, we build a simple but effective tool to generate masked faces from unmasked faces automatically, and construct a new database called Masked LFW (MLFW) based on Cross-Age LFW (CALFW) database. The mask on the masked face generated by our method has good visual consistency with the original face. Moreover, we collect various mask templates, covering most of the common styles appeared in the daily life, to achieve diverse generation effects. Considering realistic scenarios, we design three kinds of combinations of face pairs. The recognition accuracy of SOTA models declines 5%-16% on MLFW database compared with the accuracy on the original images. MLFW database can be viewed and downloaded at \url{http://whdeng.cn/mlfw}.
Abstract:Although vanilla Convolutional Neural Network (CNN) based detectors can achieve satisfactory performance on fake face detection, we observe that the detectors tend to seek forgeries on a limited region of face, which reveals that the detectors is short of understanding of forgery. Therefore, we propose an attention-based data augmentation framework to guide detector refine and enlarge its attention. Specifically, our method tracks and occludes the Top-N sensitive facial regions, encouraging the detector to mine deeper into the regions ignored before for more representative forgery. Especially, our method is simple-to-use and can be easily integrated with various CNN models. Extensive experiments show that the detector trained with our method is capable to separately point out the representative forgery of fake faces generated by different manipulation techniques, and our method enables a vanilla CNN-based detector to achieve state-of-the-art performance without structure modification.