Abstract:Temporal sentence grounding is a challenging task that aims to localize the moment spans relevant to a language description. Although recent DETR-based models have achieved notable progress by leveraging multiple learnable moment queries, they suffer from overlapped and redundant proposals, leading to inaccurate predictions. We attribute this limitation to the lack of task-related guidance for the learnable queries to serve a specific mode. Furthermore, the complex solution space generated by variable and open-vocabulary language descriptions exacerbates the optimization difficulty, making it harder for learnable queries to distinguish each other adaptively. To tackle this limitation, we present a Region-Guided TRansformer (RGTR) for temporal sentence grounding, which diversifies moment queries to eliminate overlapped and redundant predictions. Instead of using learnable queries, RGTR adopts a set of anchor pairs as moment queries to introduce explicit regional guidance. Each anchor pair takes charge of moment prediction for a specific temporal region, which reduces the optimization difficulty and ensures the diversity of the final predictions. In addition, we design an IoU-aware scoring head to improve proposal quality. Extensive experiments demonstrate the effectiveness of RGTR, outperforming state-of-the-art methods on QVHighlights, Charades-STA and TACoS datasets.
Abstract:Semi-supervised action recognition aims to improve spatio-temporal reasoning ability with a few labeled data in conjunction with a large amount of unlabeled data. Albeit recent advancements, existing powerful methods are still prone to making ambiguous predictions under scarce labeled data, embodied as the limitation of distinguishing different actions with similar spatio-temporal information. In this paper, we approach this problem by empowering the model two aspects of capability, namely discriminative spatial modeling and temporal structure modeling for learning discriminative spatio-temporal representations. Specifically, we propose an Adaptive Contrastive Learning~(ACL) strategy. It assesses the confidence of all unlabeled samples by the class prototypes of the labeled data, and adaptively selects positive-negative samples from a pseudo-labeled sample bank to construct contrastive learning. Additionally, we introduce a Multi-scale Temporal Learning~(MTL) strategy. It could highlight informative semantics from long-term clips and integrate them into the short-term clip while suppressing noisy information. Afterwards, both of these two new techniques are integrated in a unified framework to encourage the model to make accurate predictions. Extensive experiments on UCF101, HMDB51 and Kinetics400 show the superiority of our method over prior state-of-the-art approaches.
Abstract:The crux of semi-supervised temporal action localization (SS-TAL) lies in excavating valuable information from abundant unlabeled videos. However, current approaches predominantly focus on building models that are robust to the error-prone target class (i.e, the predicted class with the highest confidence) while ignoring informative semantics within non-target classes. This paper approaches SS-TAL from a novel perspective by advocating for learning from non-target classes, transcending the conventional focus solely on the target class. The proposed approach involves partitioning the label space of the predicted class distribution into distinct subspaces: target class, positive classes, negative classes, and ambiguous classes, aiming to mine both positive and negative semantics that are absent in the target class, while excluding ambiguous classes. To this end, we first devise innovative strategies to adaptively select high-quality positive and negative classes from the label space, by modeling both the confidence and rank of a class in relation to those of the target class. Then, we introduce novel positive and negative losses designed to guide the learning process, pushing predictions closer to positive classes and away from negative classes. Finally, the positive and negative processes are integrated into a hybrid positive-negative learning framework, facilitating the utilization of non-target classes in both labeled and unlabeled videos. Experimental results on THUMOS14 and ActivityNet v1.3 demonstrate the superiority of the proposed method over prior state-of-the-art approaches.
Abstract:The main challenge of Temporal Action Localization is to retrieve subtle human actions from various co-occurring ingredients, e.g., context and background, in an untrimmed video. While prior approaches have achieved substantial progress through devising advanced action detectors, they still suffer from these co-occurring ingredients which often dominate the actual action content in videos. In this paper, we explore two orthogonal but complementary aspects of a video snippet, i.e., the action features and the co-occurrence features. Especially, we develop a novel auxiliary task by decoupling these two types of features within a video snippet and recombining them to generate a new feature representation with more salient action information for accurate action localization. We term our method RefactorNet, which first explicitly factorizes the action content and regularizes its co-occurrence features, and then synthesizes a new action-dominated video representation. Extensive experimental results and ablation studies on THUMOS14 and ActivityNet v1.3 demonstrate that our new representation, combined with a simple action detector, can significantly improve the action localization performance.