Abstract:Large Language Models (LLMs) have catalyzed significant advancements in Natural Language Processing (NLP), yet they encounter challenges such as hallucination and the need for domain-specific knowledge. To mitigate these, recent methodologies have integrated information retrieved from external resources with LLMs, substantially enhancing their performance across NLP tasks. This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs), both Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Understanding (RAU), providing an in-depth examination of their paradigm, evolution, taxonomy, and applications. The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations, and how their interactions lead to diverse model structures and applications. RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications. The survey includes several evaluation methods of RALMs, emphasizing the importance of robustness, accuracy, and relevance in their assessment. It also acknowledges the limitations of RALMs, particularly in retrieval quality and computational efficiency, offering directions for future research. In conclusion, this survey aims to offer a structured insight into RALMs, their potential, and the avenues for their future development in NLP. The paper is supplemented with a Github Repository containing the surveyed works and resources for further study: https://github.com/2471023025/RALM_Survey.
Abstract:With the rapid development of neural network architectures and speech processing models, singing voice synthesis with neural networks is becoming the cutting-edge technique of digital music production. In this work, in order to explore how to improve the quality and efficiency of singing voice synthesis, in this work, we use encoder-decoder neural models and a number of vocoders to achieve singing voice synthesis. We conduct experiments to demonstrate that the models can be trained using voice data with pitch information, lyrics and beat information, and the trained models can produce smooth, clear and natural singing voice that is close to real human voice. As the models work in the end-to-end manner, they allow users who are not domain experts to directly produce singing voice by arranging pitches, lyrics and beats.