Abstract:Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art.
Abstract:We introduce Seed-TTS, a family of large-scale autoregressive text-to-speech (TTS) models capable of generating speech that is virtually indistinguishable from human speech. Seed-TTS serves as a foundation model for speech generation and excels in speech in-context learning, achieving performance in speaker similarity and naturalness that matches ground truth human speech in both objective and subjective evaluations. With fine-tuning, we achieve even higher subjective scores across these metrics. Seed-TTS offers superior controllability over various speech attributes such as emotion and is capable of generating highly expressive and diverse speech for speakers in the wild. Furthermore, we propose a self-distillation method for speech factorization, as well as a reinforcement learning approach to enhance model robustness, speaker similarity, and controllability. We additionally present a non-autoregressive (NAR) variant of the Seed-TTS model, named $\text{Seed-TTS}_\text{DiT}$, which utilizes a fully diffusion-based architecture. Unlike previous NAR-based TTS systems, $\text{Seed-TTS}_\text{DiT}$ does not depend on pre-estimated phoneme durations and performs speech generation through end-to-end processing. We demonstrate that this variant achieves comparable performance to the language model-based variant and showcase its effectiveness in speech editing. We encourage readers to listen to demos at \url{https://bytedancespeech.github.io/seedtts_tech_report}.
Abstract:Self-supervised landmark estimation is a challenging task that demands the formation of locally distinct feature representations to identify sparse facial landmarks in the absence of annotated data. To tackle this task, existing state-of-the-art (SOTA) methods (1) extract coarse features from backbones that are trained with instance-level self-supervised learning (SSL) paradigms, which neglect the dense prediction nature of the task, (2) aggregate them into memory-intensive hypercolumn formations, and (3) supervise lightweight projector networks to naively establish full local correspondences among all pairs of spatial features. In this paper, we introduce SCE-MAE, a framework that (1) leverages the MAE, a region-level SSL method that naturally better suits the landmark prediction task, (2) operates on the vanilla feature map instead of on expensive hypercolumns, and (3) employs a Correspondence Approximation and Refinement Block (CARB) that utilizes a simple density peak clustering algorithm and our proposed Locality-Constrained Repellence Loss to directly hone only select local correspondences. We demonstrate through extensive experiments that SCE-MAE is highly effective and robust, outperforming existing SOTA methods by large margins of approximately 20%-44% on the landmark matching and approximately 9%-15% on the landmark detection tasks.
Abstract:Object detection with event cameras enjoys the property of low latency and high dynamic range, making it suitable for safety-critical scenarios such as self-driving. However, labeling event streams with high temporal resolutions for supervised training is costly. We address this issue with LEOD, the first framework for label-efficient event-based detection. Our method unifies weakly- and semi-supervised object detection with a self-training mechanism. We first utilize a detector pre-trained on limited labels to produce pseudo ground truth on unlabeled events, and then re-train the detector with both real and generated labels. Leveraging the temporal consistency of events, we run bi-directional inference and apply tracking-based post-processing to enhance the quality of pseudo labels. To stabilize training, we further design a soft anchor assignment strategy to mitigate the noise in labels. We introduce new experimental protocols to evaluate the task of label-efficient event-based detection on Gen1 and 1Mpx datasets. LEOD consistently outperforms supervised baselines across various labeling ratios. For example, on Gen1, it improves mAP by 8.6% and 7.8% for RVT-S trained with 1% and 2% labels. On 1Mpx, RVT-S with 10% labels even surpasses its fully-supervised counterpart using 100% labels. LEOD maintains its effectiveness even when all labeled data are available, reaching new state-of-the-art results. Finally, we show that our method readily scales to improve larger detectors as well.
Abstract:Current methods for Knowledge-Based Question Answering (KBQA) usually rely on complex training techniques and model frameworks, leading to many limitations in practical applications. Recently, the emergence of In-Context Learning (ICL) capabilities in Large Language Models (LLMs) provides a simple and training-free semantic parsing paradigm for KBQA: Given a small number of questions and their labeled logical forms as demo examples, LLMs can understand the task intent and generate the logic form for a new question. However, current powerful LLMs have little exposure to logic forms during pre-training, resulting in a high format error rate. To solve this problem, we propose a code-style in-context learning method for KBQA, which converts the generation process of unfamiliar logical form into the more familiar code generation process for LLMs. Experimental results on three mainstream datasets show that our method dramatically mitigated the formatting error problem in generating logic forms while realizing a new SOTA on WebQSP, GrailQA, and GraphQ under the few-shot setting.
Abstract:Live commerce is the act of selling products online through live streaming. The customer's diverse demands for online products introduce more challenges to Livestreaming Product Recognition. Previous works have primarily focused on fashion clothing data or utilize single-modal input, which does not reflect the real-world scenario where multimodal data from various categories are present. In this paper, we present LPR4M, a large-scale multimodal dataset that covers 34 categories, comprises 3 modalities (image, video, and text), and is 50x larger than the largest publicly available dataset. LPR4M contains diverse videos and noise modality pairs while exhibiting a long-tailed distribution, resembling real-world problems. Moreover, a cRoss-vIew semantiC alignmEnt (RICE) model is proposed to learn discriminative instance features from the image and video views of the products. This is achieved through instance-level contrastive learning and cross-view patch-level feature propagation. A novel Patch Feature Reconstruction loss is proposed to penalize the semantic misalignment between cross-view patches. Extensive experiments demonstrate the effectiveness of RICE and provide insights into the importance of dataset diversity and expressivity. The dataset and code are available at https://github.com/adxcreative/RICE
Abstract:This work presents our solutions to the Algonauts Project 2023 Challenge. The primary objective of the challenge revolves around employing computational models to anticipate brain responses captured during participants' observation of intricate natural visual scenes. The goal is to predict brain responses across the entire visual brain, as it is the region where the most reliable responses to images have been observed. We constructed an image-based brain encoder through a two-step training process to tackle this challenge. Initially, we created a pretrained encoder using data from all subjects. Next, we proceeded to fine-tune individual subjects. Each step employed different training strategies, such as different loss functions and objectives, to introduce diversity. Ultimately, our solution constitutes an ensemble of multiple unique encoders. The code is available at https://github.com/uark-cviu/Algonauts2023
Abstract:Recent advances in 2D zero-shot and few-shot recognition often leverage large pre-trained vision-language models (VLMs) such as CLIP. Due to a shortage of suitable datasets, it is currently infeasible to train such models for event camera data. Thus, leveraging existing models across modalities is an important research challenge. In this work, we propose EventCLIP, a new method that utilizes CLIP for zero-shot and few-shot recognition on event camera data. First, we demonstrate the suitability of CLIP's image embeddings for zero-shot event classification by converting raw events to 2D grid-based representations. Second, we propose a feature adapter that aggregates temporal information over event frames and refines text embeddings to better align with the visual inputs. We evaluate our work on N-Caltech, N-Cars, and N-ImageNet datasets under the few-shot learning setting, where EventCLIP achieves state-of-the-art performance. Finally, we show that the robustness of existing event-based classifiers against data variations can be further boosted by ensembling with EventCLIP.
Abstract:This paper presents a framework for efficient 3D clothed avatar reconstruction. By combining the advantages of the high accuracy of optimization-based methods and the efficiency of learning-based methods, we propose a coarse-to-fine way to realize a high-fidelity clothed avatar reconstruction (CAR) from a single image. At the first stage, we use an implicit model to learn the general shape in the canonical space of a person in a learning-based way, and at the second stage, we refine the surface detail by estimating the non-rigid deformation in the posed space in an optimization way. A hyper-network is utilized to generate a good initialization so that the convergence o f the optimization process is greatly accelerated. Extensive experiments on various datasets show that the proposed CAR successfully produces high-fidelity avatars for arbitrarily clothed humans in real scenes.
Abstract:Training deep neural network (DNN) models, which has become an important task in today's software development, is often costly in terms of computational resources and time. With the inspiration of software reuse, building DNN models through reusing existing ones has gained increasing attention recently. Prior approaches to DNN model reuse have two main limitations: 1) reusing the entire model, while only a small part of the model's functionalities (labels) are required, would cause much overhead (e.g., computational and time costs for inference), and 2) model reuse would inherit the defects and weaknesses of the reused model, and hence put the new system under threats of security attack. To solve the above problem, we propose SeaM, a tool that re-engineers a trained DNN model to improve its reusability. Specifically, given a target problem and a trained model, SeaM utilizes a gradient-based search method to search for the model's weights that are relevant to the target problem. The re-engineered model that only retains the relevant weights is then reused to solve the target problem. Evaluation results on widely-used models show that the re-engineered models produced by SeaM only contain 10.11% weights of the original models, resulting 42.41% reduction in terms of inference time. For the target problem, the re-engineered models even outperform the original models in classification accuracy by 5.85%. Moreover, reusing the re-engineered models inherits an average of 57% fewer defects than reusing the entire model. We believe our approach to reducing reuse overhead and defect inheritance is one important step forward for practical model reuse.