Abstract:Compression is an efficient way to relieve the tremendous communication overhead of federated learning (FL) systems. However, for the existing works, the information loss under compression will lead to unexpected model/gradient deviation for the FL training, significantly degrading the training performance, especially under the challenges of data heterogeneity and model obsolescence. To strike a delicate trade-off between model accuracy and traffic cost, we propose Caesar, a novel FL framework with a low-deviation compression approach. For the global model download, we design a greedy method to optimize the compression ratio for each device based on the staleness of the local model, ensuring a precise initial model for local training. Regarding the local gradient upload, we utilize the device's local data properties (\ie, sample volume and label distribution) to quantify its local gradient's importance, which then guides the determination of the gradient compression ratio. Besides, with the fine-grained batch size optimization, Caesar can significantly diminish the devices' idle waiting time under the synchronized barrier. We have implemented Caesar on two physical platforms with 40 smartphones and 80 NVIDIA Jetson devices. Extensive results show that Caesar can reduce the traffic costs by about 25.54%$\thicksim$37.88% compared to the compression-based baselines with the same target accuracy, while incurring only a 0.68% degradation in final test accuracy relative to the full-precision communication.
Abstract:Recent advancements in artificial intelligence (AI) have positioned deep learning (DL) as a pivotal technology in fields like computer vision, data mining, and natural language processing. A critical factor in DL performance is the selection of neural network architecture. Traditional predefined architectures often fail to adapt to different data distributions, making it challenging to achieve optimal performance. Neural architecture search (NAS) offers a solution by automatically designing architectures tailored to specific datasets. However, the effectiveness of NAS diminishes on long-tailed datasets, where a few classes have abundant samples, and many have few, leading to biased models.In this paper, we explore to improve the searching and training performance of NAS on long-tailed datasets. Specifically, we first discuss the related works about NAS and the deep learning method for long-tailed datasets.Then, we focus on an existing work, called SSF-NAS, which integrates the self-supervised learning and fair differentiable NAS to making NAS achieve better performance on long-tailed datasets.An detailed description about the fundamental techniques for SSF-NAS is provided in this paper, including DARTS, FairDARTS, and Barlow Twins. Finally, we conducted a series of experiments on the CIFAR10-LT dataset for performance evaluation, where the results are align with our expectation.