Abstract:Compression is an efficient way to relieve the tremendous communication overhead of federated learning (FL) systems. However, for the existing works, the information loss under compression will lead to unexpected model/gradient deviation for the FL training, significantly degrading the training performance, especially under the challenges of data heterogeneity and model obsolescence. To strike a delicate trade-off between model accuracy and traffic cost, we propose Caesar, a novel FL framework with a low-deviation compression approach. For the global model download, we design a greedy method to optimize the compression ratio for each device based on the staleness of the local model, ensuring a precise initial model for local training. Regarding the local gradient upload, we utilize the device's local data properties (\ie, sample volume and label distribution) to quantify its local gradient's importance, which then guides the determination of the gradient compression ratio. Besides, with the fine-grained batch size optimization, Caesar can significantly diminish the devices' idle waiting time under the synchronized barrier. We have implemented Caesar on two physical platforms with 40 smartphones and 80 NVIDIA Jetson devices. Extensive results show that Caesar can reduce the traffic costs by about 25.54%$\thicksim$37.88% compared to the compression-based baselines with the same target accuracy, while incurring only a 0.68% degradation in final test accuracy relative to the full-precision communication.
Abstract:In a federated learning (FL) system, many devices, such as smartphones, are often undependable (e.g., frequently disconnected from WiFi) during training. Existing FL frameworks always assume a dependable environment and exclude undependable devices from training, leading to poor model performance and resource wastage. In this paper, we propose FLUDE to effectively deal with undependable environments. First, FLUDE assesses the dependability of devices based on the probability distribution of their historical behaviors (e.g., the likelihood of successfully completing training). Based on this assessment, FLUDE adaptively selects devices with high dependability for training. To mitigate resource wastage during the training phase, FLUDE maintains a model cache on each device, aiming to preserve the latest training state for later use in case local training on an undependable device is interrupted. Moreover, FLUDE proposes a staleness-aware strategy to judiciously distribute the global model to a subset of devices, thus significantly reducing resource wastage while maintaining model performance. We have implemented FLUDE on two physical platforms with 120 smartphones and NVIDIA Jetson devices. Extensive experimental results demonstrate that FLUDE can effectively improve model performance and resource efficiency of FL training in undependable environments.
Abstract:Federated fine-tuning (FedFT) has been proposed to fine-tune the pre-trained language models in a distributed manner. However, there are two critical challenges for efficient FedFT in practical applications, i.e., resource constraints and system heterogeneity. Existing works rely on parameter-efficient fine-tuning methods, e.g., low-rank adaptation (LoRA), but with major limitations. Herein, based on the inherent characteristics of FedFT, we observe that LoRA layers with higher ranks added close to the output help to save resource consumption while achieving comparable fine-tuning performance. Then we propose a novel LoRA-based FedFT framework, termed LEGEND, which faces the difficulty of determining the number of LoRA layers (called, LoRA depth) and the rank of each LoRA layer (called, rank distribution). We analyze the coupled relationship between LoRA depth and rank distribution, and design an efficient LoRA configuration algorithm for heterogeneous devices, thereby promoting fine-tuning efficiency. Extensive experiments are conducted on a physical platform with 80 commercial devices. The results show that LEGEND can achieve a speedup of 1.5-2.8$\times$ and save communication costs by about 42.3% when achieving the target accuracy, compared to the advanced solutions.
Abstract:Federated Graph Learning (FGL) has demonstrated the advantage of training a global Graph Neural Network (GNN) model across distributed clients using their local graph data. Unlike Euclidean data (\eg, images), graph data is composed of nodes and edges, where the overall node-edge connections determine the topological structure, and individual nodes along with their neighbors capture local node features. However, existing studies tend to prioritize one aspect over the other, leading to an incomplete understanding of the data and the potential misidentification of key characteristics across varying graph scenarios. Additionally, the non-independent and identically distributed (non-IID) nature of graph data makes the extraction of these two data characteristics even more challenging. To address the above issues, we propose a novel FGL framework, named FedGCF, which aims to simultaneously extract and fuse structural properties and node features to effectively handle diverse graph scenarios. FedGCF first clusters clients by structural similarity, performing model aggregation within each cluster to form the shared structural model. Next, FedGCF selects the clients with common node features and aggregates their models to generate a common node model. This model is then propagated to all clients, allowing common node features to be shared. By combining these two models with a proper ratio, FedGCF can achieve a comprehensive understanding of the graph data and deliver better performance, even under non-IID distributions. Experimental results show that FedGCF improves accuracy by 4.94%-7.24% under different data distributions and reduces communication cost by 64.18%-81.25% to reach the same accuracy compared to baselines.
Abstract:Large language models (LLMs) typically employ greedy decoding or low-temperature sampling for reasoning tasks, reflecting a perceived trade-off between diversity and accuracy. We challenge this convention by introducing top-$n\sigma$, a novel sampling method that operates directly on pre-softmax logits by leveraging a statistical threshold. Our key insight is that logits naturally separate into a Gaussian-distributed noisy region and a distinct informative region, enabling efficient token filtering without complex probability manipulations. Unlike existing methods (e.g., top-$p$, min-$p$) that inadvertently include more noise tokens at higher temperatures, top-$n\sigma$ maintains a stable sampling space regardless of temperature scaling. We also provide a theoretical analysis of top-$n\sigma$ to better understand its behavior. The extensive experimental results across four reasoning-focused datasets demonstrate that our method not only outperforms existing sampling approaches but also surpasses greedy decoding, while maintaining consistent performance even at high temperatures.
Abstract:Federated Graph Learning (FGL) is an emerging technology that enables clients to collaboratively train powerful Graph Neural Networks (GNNs) in a distributed manner without exposing their private data. Nevertheless, FGL still faces the challenge of the severe non-Independent and Identically Distributed (non-IID) nature of graphs, which possess diverse node and edge structures, especially across varied domains. Thus, exploring the knowledge inherent in these structures becomes significantly crucial. Existing methods, however, either overlook the inherent structural knowledge in graph data or capture it at the cost of significantly increased resource demands (e.g., FLOPs and communication bandwidth), which can be detrimental to distributed paradigms. Inspired by this, we propose FedDense, a novel FGL framework that optimizes the utilization efficiency of inherent structural knowledge. To better acquire knowledge of diverse and underexploited structures, FedDense first explicitly encodes the structural knowledge inherent within graph data itself alongside node features. Besides, FedDense introduces a Dual-Densely Connected (DDC) GNN architecture that exploits the multi-scale (i.e., one-hop to multi-hop) feature and structure insights embedded in the aggregated feature maps at each layer. In addition to the exploitation of inherent structures, we consider resource limitations in FGL, devising exceedingly narrow layers atop the DDC architecture and adopting a selective parameter sharing strategy to reduce resource costs substantially. We conduct extensive experiments using 15 datasets across 4 different domains, demonstrating that FedDense consistently surpasses baselines by a large margin in training performance, while demanding minimal resources.