Abstract:Offering great potential in robotic manipulation, a capable Vision-Language-Action (VLA) foundation model is expected to faithfully generalize across tasks and platforms while ensuring cost efficiency (e.g., data and GPU hours required for adaptation). To this end, we develop LingBot-VLA with around 20,000 hours of real-world data from 9 popular dual-arm robot configurations. Through a systematic assessment on 3 robotic platforms, each completing 100 tasks with 130 post-training episodes per task, our model achieves clear superiority over competitors, showcasing its strong performance and broad generalizability. We have also built an efficient codebase, which delivers a throughput of 261 samples per second per GPU with an 8-GPU training setup, representing a 1.5~2.8$\times$ (depending on the relied VLM base model) speedup over existing VLA-oriented codebases. The above features ensure that our model is well-suited for real-world deployment. To advance the field of robot learning, we provide open access to the code, base model, and benchmark data, with a focus on enabling more challenging tasks and promoting sound evaluation standards.
Abstract:Large Language Models (LLMs) perform well on many NLP tasks, but fine-tuning them on resource-constrained mobile devices is challenging due to high memory and computation costs, despite growing demands for privacy-preserving personalization. Federated Learning (FL) enables local-data training, yet existing methods either rely on memory-intensive backpropagation or use zeroth-order optimization (ZOO), which avoids backward passes but suffers from slow convergence and degraded accuracy. We propose CooperLLM, a cloud-assisted edge-end cooperative federated fine-tuning framework that combines ZOO on mobile devices with cloud-guided gradient rectification. Mobile clients perform lightweight ZOO updates on private data, while the cloud fine-tunes on auxiliary public data using backpropagation and injects guided perturbations to rectify local updates, improving convergence and accuracy without violating privacy. To address system bottlenecks, CooperLLM introduces pipeline scheduling and adaptive compression to overlap computation and communication and reduce memory usage. Experiments on multiple Transformer models and datasets show that CooperLLM reduces on-device memory by up to $86.4\%$, accelerates convergence by $8.8 \times$, and improves accuracy by up to 10 percentage points over state-of-the-art ZOO-based baselines.
Abstract:Large language models (LLMs) currently suffer from parameter entanglement, where general reasoning capabilities (logic) and specific factual knowledge (facts) exist in a superposition state within shared weights. This coupling leads to the "memory wall," where computational capacity is squandered on simulating retrieval, often resulting in hallucinations. In this paper, we propose "digital metabolism," a thermodynamic hypothesis suggesting that targeted forgetting is necessary for distilling a pure neural logic core. To validate this hypothesis, we introduce the Regenerative Logic-Core Protocol (RLCP), a dual-stream training framework that renders specific factual dependencies linearly undecodable via deep-layer gradient reversal. Applying RLCP to Qwen2.5-0.5B, we observe a distinct phase transition: the model achieves near-zero retention of targeted factual associations (Accuracy < 7%) while exhibiting changes consistent with an emergent "structural crystallization" effect. Empirical analysis on GSM8K reveals that the "metabolized" model spontaneously adopts chain-of-thought (CoT) scaffolding, which we interpret as compensating for the loss of direct associative recall (shifting from $O(1)$ recall to $O(N)$ reasoning). While the causal mechanism underlying this behavioral shift requires further investigation, our findings provide a dynamic weight-level counterpart to architectural innovations like DeepSeek's Engram, paving the way for modular "Neural CPU + Symbolic RAM" architectures.
Abstract:We study generative modeling of \emph{variable-length trajectories} -- sequences of visited locations/items with associated timestamps -- for downstream simulation and counterfactual analysis. A recurring practical issue is that standard mini-batch training can be unstable when trajectory lengths are highly heterogeneous, which in turn degrades \emph{distribution matching} for trajectory-derived statistics. We propose \textbf{length-aware sampling (LAS)}, a simple batching strategy that groups trajectories by length and samples batches from a single length bucket, reducing within-batch length heterogeneity (and making updates more consistent) without changing the model class. We integrate LAS into a conditional trajectory GAN with auxiliary time-alignment losses and provide (i) a distribution-level guarantee for derived variables under mild boundedness assumptions, and (ii) an IPM/Wasserstein mechanism explaining why LAS improves distribution matching by removing length-only shortcut critics and targeting within-bucket discrepancies. Empirically, LAS consistently improves matching of derived-variable distributions on a multi-mall dataset of shopper trajectories and on diverse public sequence datasets (GPS, education, e-commerce, and movies), outperforming random sampling across dataset-specific metrics.
Abstract:We consider the problem of active 3D imaging using single-shot structured light systems, which are widely employed in commercial 3D sensing devices such as Apple Face ID and Intel RealSense. Traditional structured light methods typically decode depth correspondences through pixel-domain matching algorithms, resulting in limited robustness under challenging scenarios like occlusions, fine-structured details, and non-Lambertian surfaces. Inspired by recent advances in neural feature matching, we propose a learning-based structured light decoding framework that performs robust correspondence matching within feature space rather than the fragile pixel domain. Our method extracts neural features from the projected patterns and captured infrared (IR) images, explicitly incorporating their geometric priors by building cost volumes in feature space, achieving substantial performance improvements over pixel-domain decoding approaches. To further enhance depth quality, we introduce a depth refinement module that leverages strong priors from large-scale monocular depth estimation models, improving fine detail recovery and global structural coherence. To facilitate effective learning, we develop a physically-based structured light rendering pipeline, generating nearly one million synthetic pattern-image pairs with diverse objects and materials for indoor settings. Experiments demonstrate that our method, trained exclusively on synthetic data with multiple structured light patterns, generalizes well to real-world indoor environments, effectively processes various pattern types without retraining, and consistently outperforms both commercial structured light systems and passive stereo RGB-based depth estimation methods. Project page: https://namisntimpot.github.io/NSLweb/.
Abstract:City-scale 3D reconstruction from satellite imagery presents the challenge of extreme viewpoint extrapolation, where our goal is to synthesize ground-level novel views from sparse orbital images with minimal parallax. This requires inferring nearly $90^\circ$ viewpoint gaps from image sources with severely foreshortened facades and flawed textures, causing state-of-the-art reconstruction engines such as NeRF and 3DGS to fail. To address this problem, we propose two design choices tailored for city structures and satellite inputs. First, we model city geometry as a 2.5D height map, implemented as a Z-monotonic signed distance field (SDF) that matches urban building layouts from top-down viewpoints. This stabilizes geometry optimization under sparse, off-nadir satellite views and yields a watertight mesh with crisp roofs and clean, vertically extruded facades. Second, we paint the mesh appearance from satellite images via differentiable rendering techniques. While the satellite inputs may contain long-range, blurry captures, we further train a generative texture restoration network to enhance the appearance, recovering high-frequency, plausible texture details from degraded inputs. Our method's scalability and robustness are demonstrated through extensive experiments on large-scale urban reconstruction. For example, in our teaser figure, we reconstruct a $4\,\mathrm{km}^2$ real-world region from only a few satellite images, achieving state-of-the-art performance in synthesizing photorealistic ground views. The resulting models are not only visually compelling but also serve as high-fidelity, application-ready assets for downstream tasks like urban planning and simulation. Project page can be found at https://pku-vcl-geometry.github.io/Orbit2Ground/.
Abstract:Masked auto-regressive diffusion models (MAR) benefit from the expressive modeling ability of diffusion models and the flexibility of masked auto-regressive ordering. However, vanilla MAR suffers from slow inference due to its hierarchical inference mechanism: an outer AR unmasking loop and an inner diffusion denoising chain. Such decoupled structure not only harm the generation efficiency but also hinder the practical use of MAR for reinforcement learning (RL), an increasingly critical paradigm for generative model post-training.To address this fundamental issue, we introduce MARVAL (Masked Auto-regressive Variational Acceleration), a distillation-based framework that compresses the diffusion chain into a single AR generation step while preserving the flexible auto-regressive unmasking order. Such a distillation with MARVAL not only yields substantial inference acceleration but, crucially, makes RL post-training with verifiable rewards practical, resulting in scalable yet human-preferred fast generative models. Our contributions are twofold: (1) a novel score-based variational objective for distilling masked auto-regressive diffusion models into a single generation step without sacrificing sample quality; and (2) an efficient RL framework for masked auto-regressive models via MARVAL-RL. On ImageNet 256*256, MARVAL-Huge achieves an FID of 2.00 with more than 30 times speedup compared with MAR-diffusion, and MARVAL-RL yields consistent improvements in CLIP and image-reward scores on ImageNet datasets with entity names. In conclusion, MARVAL demonstrates the first practical path to distillation and RL of masked auto-regressive diffusion models, enabling fast sampling and better preference alignments.




Abstract:Text-to-3D generation has advanced rapidly, yet state-of-the-art models, encompassing both optimization-based and feed-forward architectures, still face two fundamental limitations. First, they struggle with coarse semantic alignment, often failing to capture fine-grained prompt details. Second, they lack robust 3D spatial understanding, leading to geometric inconsistencies and catastrophic failures in part assembly and spatial relationships. To address these challenges, we propose VLM3D, a general framework that repurposes large vision-language models (VLMs) as powerful, differentiable semantic and spatial critics. Our core contribution is a dual-query critic signal derived from the VLM's Yes or No log-odds, which assesses both semantic fidelity and geometric coherence. We demonstrate the generality of this guidance signal across two distinct paradigms: (1) As a reward objective for optimization-based pipelines, VLM3D significantly outperforms existing methods on standard benchmarks. (2) As a test-time guidance module for feed-forward pipelines, it actively steers the iterative sampling process of SOTA native 3D models to correct severe spatial errors. VLM3D establishes a principled and generalizable path to inject the VLM's rich, language-grounded understanding of both semantics and space into diverse 3D generative pipelines.
Abstract:Video inverse problems are fundamental to streaming, telepresence, and AR/VR, where high perceptual quality must coexist with tight latency constraints. Diffusion-based priors currently deliver state-of-the-art reconstructions, but existing approaches either adapt image diffusion models with ad hoc temporal regularizers - leading to temporal artifacts - or rely on native video diffusion models whose iterative posterior sampling is far too slow for real-time use. We introduce InstantViR, an amortized inference framework for ultra-fast video reconstruction powered by a pre-trained video diffusion prior. We distill a powerful bidirectional video diffusion model (teacher) into a causal autoregressive student that maps a degraded video directly to its restored version in a single forward pass, inheriting the teacher's strong temporal modeling while completely removing iterative test-time optimization. The distillation is prior-driven: it only requires the teacher diffusion model and known degradation operators, and does not rely on externally paired clean/noisy video data. To further boost throughput, we replace the video-diffusion backbone VAE with a high-efficiency LeanVAE via an innovative teacher-space regularized distillation scheme, enabling low-latency latent-space processing. Across streaming random inpainting, Gaussian deblurring and super-resolution, InstantViR matches or surpasses the reconstruction quality of diffusion-based baselines while running at over 35 FPS on NVIDIA A100 GPUs, achieving up to 100 times speedups over iterative video diffusion solvers. These results show that diffusion-based video reconstruction is compatible with real-time, interactive, editable, streaming scenarios, turning high-quality video restoration into a practical component of modern vision systems.
Abstract:Score Distillation Sampling (SDS) enables high-quality text-to-3D generation by supervising 3D models through the denoising of multi-view 2D renderings, using a pretrained text-to-image diffusion model to align with the input prompt and ensure 3D consistency. However, existing SDS-based methods face two fundamental limitations: (1) their reliance on CLIP-style text encoders leads to coarse semantic alignment and struggles with fine-grained prompts; and (2) 2D diffusion priors lack explicit 3D spatial constraints, resulting in geometric inconsistencies and inaccurate object relationships in multi-object scenes. To address these challenges, we propose VLM3D, a novel text-to-3D generation framework that integrates large vision-language models (VLMs) into the SDS pipeline as differentiable semantic and spatial priors. Unlike standard text-to-image diffusion priors, VLMs leverage rich language-grounded supervision that enables fine-grained prompt alignment. Moreover, their inherent vision language modeling provides strong spatial understanding, which significantly enhances 3D consistency for single-object generation and improves relational reasoning in multi-object scenes. We instantiate VLM3D based on the open-source Qwen2.5-VL model and evaluate it on the GPTeval3D benchmark. Experiments across diverse objects and complex scenes show that VLM3D significantly outperforms prior SDS-based methods in semantic fidelity, geometric coherence, and spatial correctness.