Abstract:Three-dimensional (3D) point clouds are becoming more and more popular for representing 3D objects and scenes. Due to limited network bandwidth, efficient compression of 3D point clouds is crucial. To tackle this challenge, the Moving Picture Experts Group (MPEG) is actively developing the Geometry-based Point Cloud Compression (G-PCC) standard, incorporating innovative methods to optimize compression, such as the Region-Adaptive Hierarchical Transform (RAHT) nestled within a layer-by-layer octree-tree structure. Nevertheless, a notable problem still exists in RAHT, i.e., the proportion of zero residuals in the last few RAHT layers leads to unnecessary bitrate consumption. To address this problem, we propose an adaptive skip coding method for RAHT, which adaptively determines whether to encode the residuals of the last several layers or not, thereby improving the coding efficiency. In addition, we propose a rate-distortion cost calculation method associated with an adaptive Lagrange multiplier. Experimental results demonstrate that the proposed method achieves average Bj{\o}ntegaard rate improvements of -3.50%, -5.56%, and -4.18% for the Luma, Cb, and Cr components, respectively, on dynamic point clouds, when compared with the state-of-the-art G-PCC reference software under the common test conditions recommended by MPEG.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
Abstract:No-reference bitstream-layer point cloud quality assessment (PCQA) can be deployed without full decoding at any network node to achieve real-time quality monitoring. In this work, we develop the first PCQA model dedicated to Trisoup-Lifting encoded 3D point clouds by analyzing bitstreams without full decoding. Specifically, we investigate the relationship among texture bitrate per point (TBPP), texture complexity (TC) and texture quantization parameter (TQP) while geometry encoding is lossless. Subsequently, we estimate TC by utilizing TQP and TBPP. Then, we establish a texture distortion evaluation model based on TC, TBPP and TQP. Ultimately, by integrating this texture distortion model with a geometry attenuation factor, a function of trisoupNodeSizeLog2 (tNSL), we acquire a comprehensive NR bitstream-layer PCQA model named streamPCQ-TL. In addition, this work establishes a database named WPC6.0, the first and largest PCQA database dedicated to Trisoup-Lifting encoding mode, encompassing 400 distorted point clouds with both 4 geometric multiplied by 5 texture distortion levels. Experiment results on M-PCCD, ICIP2020 and the proposed WPC6.0 database suggest that the proposed streamPCQ-TL model exhibits robust and notable performance in contrast to existing advanced PCQA metrics, particularly in terms of computational cost. The dataset and source code will be publicly released at \href{https://github.com/qdushl/Waterloo-Point-Cloud-Database-6.0}{\textit{https://github.com/qdushl/Waterloo-Point-Cloud-Database-6.0}}
Abstract:Multisensor fusion is essential for autonomous vehicles to accurately perceive, analyze, and plan their trajectories within complex environments. This typically involves the integration of data from LiDAR sensors and cameras, which necessitates high-precision and real-time registration. Current methods for registering LiDAR point clouds with images face significant challenges due to inherent modality differences and computational overhead. To address these issues, we propose EEPNet, an advanced network that leverages reflectance maps obtained from point cloud projections to enhance registration accuracy. The introduction of point cloud projections substantially mitigates cross-modality differences at the network input level, while the inclusion of reflectance data improves performance in scenarios with limited spatial information of point cloud within the camera's field of view. Furthermore, by employing edge pixels for feature matching and incorporating an efficient matching optimization layer, EEPNet markedly accelerates real-time registration tasks. Experimental validation demonstrates that EEPNet achieves superior accuracy and efficiency compared to state-of-the-art methods. Our contributions offer significant advancements in autonomous perception systems, paving the way for robust and efficient sensor fusion in real-world applications.
Abstract:We propose an end-to-end attribute compression method for dense point clouds. The proposed method combines a frequency sampling module, an adaptive scale feature extraction module with geometry assistance, and a global hyperprior entropy model. The frequency sampling module uses a Hamming window and the Fast Fourier Transform to extract high-frequency components of the point cloud. The difference between the original point cloud and the sampled point cloud is divided into multiple sub-point clouds. These sub-point clouds are then partitioned using an octree, providing a structured input for feature extraction. The feature extraction module integrates adaptive convolutional layers and uses offset-attention to capture both local and global features. Then, a geometry-assisted attribute feature refinement module is used to refine the extracted attribute features. Finally, a global hyperprior model is introduced for entropy encoding. This model propagates hyperprior parameters from the deepest (base) layer to the other layers, further enhancing the encoding efficiency. At the decoder, a mirrored network is used to progressively restore features and reconstruct the color attribute through transposed convolutional layers. The proposed method encodes base layer information at a low bitrate and progressively adds enhancement layer information to improve reconstruction accuracy. Compared to the latest G-PCC test model (TMC13v23) under the MPEG common test conditions (CTCs), the proposed method achieved an average Bjontegaard delta bitrate reduction of 24.58% for the Y component (21.23% for YUV combined) on the MPEG Category Solid dataset and 22.48% for the Y component (17.19% for YUV combined) on the MPEG Category Dense dataset. This is the first instance of a learning-based codec outperforming the G-PCC standard on these datasets under the MPEG CTCs.
Abstract:Machine vision systems, which can efficiently manage extensive visual perception tasks, are becoming increasingly popular in industrial production and daily life. Due to the challenge of simultaneously obtaining accurate depth and texture information with a single sensor, multimodal data captured by cameras and LiDAR is commonly used to enhance performance. Additionally, cloud-edge cooperation has emerged as a novel computing approach to improve user experience and ensure data security in machine vision systems. This paper proposes a pioneering solution to address the feature compression problem in multimodal 3D object detection. Given a sparse tensor-based object detection network at the edge device, we introduce two modes to accommodate different application requirements: Transmission-Friendly Feature Compression (T-FFC) and Accuracy-Friendly Feature Compression (A-FFC). In T-FFC mode, only the output of the last layer of the network's backbone is transmitted from the edge device. The received feature is processed at the cloud device through a channel expansion module and two spatial upsampling modules to generate multi-scale features. In A-FFC mode, we expand upon the T-FFC mode by transmitting two additional types of features. These added features enable the cloud device to generate more accurate multi-scale features. Experimental results on the KITTI dataset using the VirConv-L detection network showed that T-FFC was able to compress the features by a factor of 6061 with less than a 3% reduction in detection performance. On the other hand, A-FFC compressed the features by a factor of about 901 with almost no degradation in detection performance. We also designed optional residual extraction and 3D object reconstruction modules to facilitate the reconstruction of detected objects. The reconstructed objects effectively reflected details of the original objects.
Abstract:Learned image compression have attracted considerable interests in recent years. It typically comprises an analysis transform, a synthesis transform, quantization and an entropy coding model. The analysis transform and synthesis transform are used to encode an image to latent feature and decode the quantized feature to reconstruct the image, and can be regarded as coupled transforms. However, the analysis transform and synthesis transform are designed independently in the existing methods, making them unreliable in high-quality image compression. Inspired by the invertible neural networks in generative modeling, invertible modules are used to construct the coupled analysis and synthesis transforms. Considering the noise introduced in the feature quantization invalidates the invertible process, this paper proposes an Approximately Invertible Neural Network (A-INN) framework for learned image compression. It formulates the rate-distortion optimization in lossy image compression when using INN with quantization, which differentiates from using INN for generative modelling. Generally speaking, A-INN can be used as the theoretical foundation for any INN based lossy compression method. Based on this formulation, A-INN with a progressive denoising module (PDM) is developed to effectively reduce the quantization noise in the decoding. Moreover, a Cascaded Feature Recovery Module (CFRM) is designed to learn high-dimensional feature recovery from low-dimensional ones to further reduce the noise in feature channel compression. In addition, a Frequency-enhanced Decomposition and Synthesis Module (FDSM) is developed by explicitly enhancing the high-frequency components in an image to address the loss of high-frequency information inherent in neural network based image compression. Extensive experiments demonstrate that the proposed A-INN outperforms the existing learned image compression methods.
Abstract:This study proposes a novel approach utilizing a physics-informed deep learning (DL) algorithm to reconstruct occluded objects in a terahertz (THz) holographic system. Taking the angular spectrum theory as prior knowledge, we generate a dataset consisting of a series of diffraction patterns that contain information about the objects. This dataset, combined with unlabeled data measured from experiments, are used for the self-training of a physics-informed neural network (NN). During the training process, the neural network iteratively predicts the outcomes of the unlabeled data and reincorporates these results back into the training set. This recursive strategy not only reduces noise but also minimizes mutual interference during object reconstruction, demonstrating its effectiveness even in data-scarce situations. The method has been validated with both simulated and experimental data, showcasing its significant potential to advance the field of terahertz three-dimensional (3D) imaging. Additionally, it sets a new benchmark for rapid, reference-free, and cost-effective power detection.
Abstract:Conversational recommendation systems elicit user preferences by interacting with users to obtain their feedback on recommended commodities. Such systems utilize a multi-armed bandit framework to learn user preferences in an online manner and have received great success in recent years. However, existing conversational bandit methods have several limitations. First, they only enable users to provide explicit binary feedback on the recommended items or categories, leading to ambiguity in interpretation. In practice, users are usually faced with more than one choice. Relative feedback, known for its informativeness, has gained increasing popularity in recommendation system design. Moreover, current contextual bandit methods mainly work under linear reward assumptions, ignoring practical non-linear reward structures in generalized linear models. Therefore, in this paper, we introduce relative feedback-based conversations into conversational recommendation systems through the integration of dueling bandits in generalized linear models (GLM) and propose a novel conversational dueling bandit algorithm called ConDuel. Theoretical analyses of regret upper bounds and empirical validations on synthetic and real-world data underscore ConDuel's efficacy. We also demonstrate the potential to extend our algorithm to multinomial logit bandits with theoretical and experimental guarantees, which further proves the applicability of the proposed framework.
Abstract:In many applications, including surveillance, entertainment, and restoration, there is a need to increase both the spatial resolution and the frame rate of a video sequence. The aim is to improve visual quality, refine details, and create a more realistic viewing experience. Existing space-time video super-resolution methods do not effectively use spatio-temporal information. To address this limitation, we propose a generative adversarial network for joint space-time video super-resolution. The generative network consists of three operations: shallow feature extraction, deep feature extraction, and reconstruction. It uses three-dimensional (3D) convolutions to process temporal and spatial information simultaneously and includes a novel 3D attention mechanism to extract the most important channel and spatial information. The discriminative network uses a two-branch structure to handle details and motion information, making the generated results more accurate. Experimental results on the Vid4, Vimeo-90K, and REDS datasets demonstrate the effectiveness of the proposed method. The source code is publicly available at https://github.com/FCongRui/3DAttGan.git.