Abstract:We propose an end-to-end attribute compression method for dense point clouds. The proposed method combines a frequency sampling module, an adaptive scale feature extraction module with geometry assistance, and a global hyperprior entropy model. The frequency sampling module uses a Hamming window and the Fast Fourier Transform to extract high-frequency components of the point cloud. The difference between the original point cloud and the sampled point cloud is divided into multiple sub-point clouds. These sub-point clouds are then partitioned using an octree, providing a structured input for feature extraction. The feature extraction module integrates adaptive convolutional layers and uses offset-attention to capture both local and global features. Then, a geometry-assisted attribute feature refinement module is used to refine the extracted attribute features. Finally, a global hyperprior model is introduced for entropy encoding. This model propagates hyperprior parameters from the deepest (base) layer to the other layers, further enhancing the encoding efficiency. At the decoder, a mirrored network is used to progressively restore features and reconstruct the color attribute through transposed convolutional layers. The proposed method encodes base layer information at a low bitrate and progressively adds enhancement layer information to improve reconstruction accuracy. Compared to the latest G-PCC test model (TMC13v23) under the MPEG common test conditions (CTCs), the proposed method achieved an average Bjontegaard delta bitrate reduction of 24.58% for the Y component (21.23% for YUV combined) on the MPEG Category Solid dataset and 22.48% for the Y component (17.19% for YUV combined) on the MPEG Category Dense dataset. This is the first instance of a learning-based codec outperforming the G-PCC standard on these datasets under the MPEG CTCs.
Abstract:In point cloud geometry compression, most octreebased context models use the cross-entropy between the onehot encoding of node occupancy and the probability distribution predicted by the context model as the loss. This approach converts the problem of predicting the number (a regression problem) and the position (a classification problem) of occupied child nodes into a 255-dimensional classification problem. As a result, it fails to accurately measure the difference between the one-hot encoding and the predicted probability distribution. We first analyze why the cross-entropy loss function fails to accurately measure the difference between the one-hot encoding and the predicted probability distribution. Then, we propose an attention-based child node number prediction (ACNP) module to enhance the context models. The proposed module can predict the number of occupied child nodes and map it into an 8- dimensional vector to assist the context model in predicting the probability distribution of the occupancy of the current node for efficient entropy coding. Experimental results demonstrate that the proposed module enhances the coding efficiency of octree-based context models.
Abstract:Learning-based methods have proven successful in compressing geometric information for point clouds. For attribute compression, however, they still lag behind non-learning-based methods such as the MPEG G-PCC standard. To bridge this gap, we propose a novel deep learning-based point cloud attribute compression method that uses a generative adversarial network (GAN) with sparse convolution layers. Our method also includes a module that adaptively selects the resolution of the voxels used to voxelize the input point cloud. Sparse vectors are used to represent the voxelized point cloud, and sparse convolutions process the sparse tensors, ensuring computational efficiency. To the best of our knowledge, this is the first application of GANs to compress point cloud attributes. Our experimental results show that our method outperforms existing learning-based techniques and rivals the latest G-PCC test model (TMC13v23) in terms of visual quality.