Abstract:Conformal prediction, as an emerging uncertainty quantification technique, typically functions as post-hoc processing for the outputs of trained classifiers. To optimize the classifier for maximum predictive efficiency, Conformal Training rectifies the training objective with a regularization that minimizes the average prediction set size at a specific error rate. However, the regularization term inevitably deteriorates the classification accuracy and leads to suboptimal efficiency of conformal predictors. To address this issue, we introduce \textbf{Conformal Adapter} (C-Adapter), an adapter-based tuning method to enhance the efficiency of conformal predictors without sacrificing accuracy. In particular, we implement the adapter as a class of intra order-preserving functions and tune it with our proposed loss that maximizes the discriminability of non-conformity scores between correctly and randomly matched data-label pairs. Using C-Adapter, the model tends to produce extremely high non-conformity scores for incorrect labels, thereby enhancing the efficiency of prediction sets across different coverage rates. Extensive experiments demonstrate that C-Adapter can effectively adapt various classifiers for efficient prediction sets, as well as enhance the conformal training method.
Abstract:Hyperspectral image (HSI) classification involves assigning specific labels to each pixel to identify various land cover categories. Although deep classifiers have shown high predictive accuracy in this field, quantifying their uncertainty remains a significant challenge, which hinders their application in critical contexts. This study first theoretically evaluates the applicability of \textit{Conformal Prediction} (CP), an emerging technique for uncertainty quantification, in the context of HSI classification. We then propose a conformal procedure that provides HSI classifiers with trustworthy prediction sets, offering coverage guarantees that ensure these sets contain the true labels with a user-specified probability. Building on this foundation, we introduce \textit{Spatial-Aware Conformal Prediction} (\texttt{SACP}), which incorporates essential spatial information inherent in HSIs by aggregating non-conformity scores of pixels with high spatial correlation. Both theoretical and empirical results demonstrate that \texttt{SACP} outperforms standard CP in HSI classification. The source code is accessible at \url{https://github.com/J4ckLiu/SACP}.
Abstract:Feasible solutions are crucial for Integer Programming (IP) since they can substantially speed up the solving process. In many applications, similar IP instances often exhibit similar structures and shared solution distributions, which can be potentially modeled by deep learning methods. Unfortunately, existing deep-learning-based algorithms, such as Neural Diving and Predict-and-search framework, are limited to generating only partial feasible solutions, and they must rely on solvers like SCIP and Gurobi to complete the solutions for a given IP problem. In this paper, we propose a novel framework that generates complete feasible solutions end-to-end. Our framework leverages contrastive learning to characterize the relationship between IP instances and solutions, and learns latent embeddings for both IP instances and their solutions. Further, the framework employs diffusion models to learn the distribution of solution embeddings conditioned on IP representations, with a dedicated guided sampling strategy that accounts for both constraints and objectives. We empirically evaluate our framework on four typical datasets of IP problems, and show that it effectively generates complete feasible solutions with a high probability (> 89.7 \%) without the reliance of Solvers and the quality of solutions is comparable to the best heuristic solutions from Gurobi. Furthermore, by integrating our method's sampled partial solutions with the CompleteSol heuristic from SCIP, the resulting feasible solutions outperform those from state-of-the-art methods across all datasets, exhibiting a 3.7 to 33.7\% improvement in the gap to optimal values, and maintaining a feasible ratio of over 99.7\% for all datasets.
Abstract:This work proposes a novel face-swapping framework FlowFace++, utilizing explicit semantic flow supervision and end-to-end architecture to facilitate shape-aware face-swapping. Specifically, our work pretrains a facial shape discriminator to supervise the face swapping network. The discriminator is shape-aware and relies on a semantic flow-guided operation to explicitly calculate the shape discrepancies between the target and source faces, thus optimizing the face swapping network to generate highly realistic results. The face swapping network is a stack of a pre-trained face-masked autoencoder (MAE), a cross-attention fusion module, and a convolutional decoder. The MAE provides a fine-grained facial image representation space, which is unified for the target and source faces and thus facilitates final realistic results. The cross-attention fusion module carries out the source-to-target face swapping in a fine-grained latent space while preserving other attributes of the target image (e.g. expression, head pose, hair, background, illumination, etc). Lastly, the convolutional decoder further synthesizes the swapping results according to the face-swapping latent embedding from the cross-attention fusion module. Extensive quantitative and qualitative experiments on in-the-wild faces demonstrate that our FlowFace++ outperforms the state-of-the-art significantly, particularly while the source face is obstructed by uneven lighting or angle offset.
Abstract:In this work, we propose a semantic flow-guided two-stage framework for shape-aware face swapping, namely FlowFace. Unlike most previous methods that focus on transferring the source inner facial features but neglect facial contours, our FlowFace can transfer both of them to a target face, thus leading to more realistic face swapping. Concretely, our FlowFace consists of a face reshaping network and a face swapping network. The face reshaping network addresses the shape outline differences between the source and target faces. It first estimates a semantic flow (i.e., face shape differences) between the source and the target face, and then explicitly warps the target face shape with the estimated semantic flow. After reshaping, the face swapping network generates inner facial features that exhibit the identity of the source face. We employ a pre-trained face masked autoencoder (MAE) to extract facial features from both the source face and the target face. In contrast to previous methods that use identity embedding to preserve identity information, the features extracted by our encoder can better capture facial appearances and identity information. Then, we develop a cross-attention fusion module to adaptively fuse inner facial features from the source face with the target facial attributes, thus leading to better identity preservation. Extensive quantitative and qualitative experiments on in-the-wild faces demonstrate that our FlowFace outperforms the state-of-the-art significantly.
Abstract:Expressions and facial action units (AUs) are two levels of facial behavior descriptors. Expression auxiliary information has been widely used to improve the AU detection performance. However, most existing expression representations can only describe pre-determined discrete categories (e.g., Angry, Disgust, Happy, Sad, etc.) and cannot capture subtle expression transformations like AUs. In this paper, we propose a novel fine-grained \textsl{Global Expression representation Encoder} to capture subtle and continuous facial movements, to promote AU detection. To obtain such a global expression representation, we propose to train an expression embedding model on a large-scale expression dataset according to global expression similarity. Moreover, considering the local definition of AUs, it is essential to extract local AU features. Therefore, we design a \textsl{Local AU Features Module} to generate local facial features for each AU. Specifically, it consists of an AU feature map extractor and a corresponding AU mask extractor. First, the two extractors transform the global expression representation into AU feature maps and masks, respectively. Then, AU feature maps and their corresponding AU masks are multiplied to generate AU masked features focusing on local facial region. Finally, the AU masked features are fed into an AU classifier for judging the AU occurrence. Extensive experiment results demonstrate the superiority of our proposed method. Our method validly outperforms previous works and achieves state-of-the-art performances on widely-used face datasets, including BP4D, DISFA, and BP4D+.
Abstract:Facial expression analysis has been a crucial research problem in the computer vision area. With the recent development of deep learning techniques and large-scale in-the-wild annotated datasets, facial expression analysis is now aimed at challenges in real world settings. In this paper, we introduce our submission to CVPR2022 Competition on Affective Behavior Analysis in-the-wild (ABAW) that defines four competition tasks, including expression classification, action unit detection, valence-arousal estimation, and a multi-task-learning. The available multimodal information consist of spoken words, speech prosody, and visual expression in videos. Our work proposes four unified transformer-based network frameworks to create the fusion of the above multimodal information. The preliminary results on the official Aff-Wild2 dataset are reported and demonstrate the effectiveness of our proposed method.
Abstract:As online shopping prevails and e-commerce platforms emerge, there is a tremendous number of parcels being transported every day. Thus, it is crucial for the logistics industry on how to assign a candidate logistics route for each shipping parcel properly as it leaves a significant impact on the total logistics cost optimization and business constraints satisfaction such as transit hub capacity and delivery proportion of delivery providers. This online route-assignment problem can be viewed as a constrained online decision-making problem. Notably, the large amount (beyond ${10^5}$) of daily parcels, the variability and non-Markovian characteristics of parcel information impose difficulties on attaining (near-) optimal solution without violating constraints excessively. In this paper, we develop a model-free DRL approach named PPO-RA, in which Proximal Policy Optimization (PPO) is improved with dedicated techniques to address the challenges for route assignment (RA). The actor and critic networks use attention mechanism and parameter sharing to accommodate each incoming parcel with varying numbers and identities of candidate routes, without modeling non-Markovian parcel arriving dynamics since we make assumption of i.i.d. parcel arrival. We use recorded delivery parcel data to evaluate the performance of PPO-RA by comparing it with widely-used baselines via simulation. The results show the capability of the proposed approach to achieve considerable cost savings while satisfying most constraints.
Abstract:Temporal action localization is an important and challenging task that aims to locate temporal regions in real-world untrimmed videos where actions occur and recognize their classes. It is widely acknowledged that video context is a critical cue for video understanding, and exploiting the context has become an important strategy to boost localization performance. However, previous state-of-the-art methods focus more on exploring semantic context which captures the feature similarity among frames or proposals, and neglect positional context which is vital for temporal localization. In this paper, we propose a temporal-position-sensitive context modeling approach to incorporate both positional and semantic information for more precise action localization. Specifically, we first augment feature representations with directed temporal positional encoding, and then conduct attention-based information propagation, in both frame-level and proposal-level. Consequently, the generated feature representations are significantly empowered with the discriminative capability of encoding the position-aware context information, and thus benefit boundary detection and proposal evaluation. We achieve state-of-the-art performance on both two challenging datasets, THUMOS-14 and ActivityNet-1.3, demonstrating the effectiveness and generalization ability of our method.
Abstract:Hyperspectral image classification (HIC) is an important but challenging task, and a problem that limits the algorithmic development in this field is that the ground truths of hyperspectral images (HSIs) are extremely hard to obtain. Recently a handful of HIC methods are developed based on the graph convolution networks (GCNs), which effectively relieves the scarcity of labeled data for deep learning based HIC methods. To further lift the classification performance, in this work we propose a graph convolution network (GCN) based framework for HSI classification that uses two clustering operations to better exploit multi-hop node correlations and also effectively reduce graph size. In particular, we first cluster the pixels with similar spectral features into a superpixel and build the graph based on the superpixels of the input HSI. Then instead of performing convolution over this superpixel graph, we further partition it into several sub-graphs by pruning the edges with weak weights, so as to strengthen the correlations of nodes with high similarity. This second round of clustering also further reduces the graph size, thus reducing the computation burden of graph convolution. Experimental results on three widely used benchmark datasets well prove the effectiveness of our proposed framework.