Abstract:In many science and engineering settings, system dynamics are characterized by governing PDEs, and a major challenge is to solve inverse problems (IPs) where unknown PDE parameters are inferred based on observational data gathered under limited budget. Due to the high costs of setting up and running experiments, experimental design (ED) is often done with the help of PDE simulations to optimize for the most informative design parameters to solve such IPs, prior to actual data collection. This process of optimizing design parameters is especially critical when the budget and other practical constraints make it infeasible to adjust the design parameters between trials during the experiments. However, existing experimental design (ED) methods tend to require sequential and frequent design parameter adjustments between trials. Furthermore, they also have significant computational bottlenecks due to the need for complex numerical simulations for PDEs, and do not exploit the advantages provided by physics informed neural networks (PINNs), such as its meshless solutions, differentiability, and amortized training. This work presents PIED, the first ED framework that makes use of PINNs in a fully differentiable architecture to perform continuous optimization of design parameters for IPs for one-shot deployments. PIED overcomes existing methods' computational bottlenecks through parallelized computation and meta-learning of PINN parameter initialization, and proposes novel methods to effectively take into account PINN training dynamics in optimizing the ED parameters. Through experiments based on noisy simulated data and even real world experimental data, we empirically show that given limited observation budget, PIED significantly outperforms existing ED methods in solving IPs, including challenging settings where the inverse parameters are unknown functions rather than just finite-dimensional.
Abstract:Physics-Informed Neural Networks (PINNs), which incorporate PDEs as soft constraints, train with a composite loss function that contains multiple training point types: different types of collocation points chosen during training to enforce each PDE and initial/boundary conditions, and experimental points which are usually costly to obtain via experiments or simulations. Training PINNs using this loss function is challenging as it typically requires selecting large numbers of points of different types, each with different training dynamics. Unlike past works that focused on the selection of either collocation or experimental points, this work introduces PINN Adaptive ColLocation and Experimental points selection (PINNACLE), the first algorithm that jointly optimizes the selection of all training point types, while automatically adjusting the proportion of collocation point types as training progresses. PINNACLE uses information on the interaction among training point types, which had not been considered before, based on an analysis of PINN training dynamics via the Neural Tangent Kernel (NTK). We theoretically show that the criterion used by PINNACLE is related to the PINN generalization error, and empirically demonstrate that PINNACLE is able to outperform existing point selection methods for forward, inverse, and transfer learning problems.
Abstract:Existing neural active learning algorithms have aimed to optimize the predictive performance of neural networks (NNs) by selecting data for labelling. However, other than a good predictive performance, being robust against random parameter initializations is also a crucial requirement in safety-critical applications. To this end, we introduce our expected variance with Gaussian processes (EV-GP) criterion for neural active learning, which is theoretically guaranteed to select data points which lead to trained NNs with both (a) good predictive performances and (b) initialization robustness. Importantly, our EV-GP criterion is training-free, i.e., it does not require any training of the NN during data selection, which makes it computationally efficient. We empirically demonstrate that our EV-GP criterion is highly correlated with both initialization robustness and generalization performance, and show that it consistently outperforms baseline methods in terms of both desiderata, especially in situations with limited initial data or large batch sizes.