Abstract:Sequential recommendation systems aim to provide personalized recommendations for users based on their interaction history. To achieve this, they often incorporate auxiliary information, such as textual descriptions of items and auxiliary tasks, like predicting user preferences and intent. Despite numerous efforts to enhance these models, they still suffer from limited personalization. To address this issue, we propose a new paradigm, which we term preference discerning. In preference dscerning, we explicitly condition a generative sequential recommendation system on user preferences within its context. To this end, we generate user preferences using Large Language Models (LLMs) based on user reviews and item-specific data. To evaluate preference discerning capabilities of sequential recommendation systems, we introduce a novel benchmark that provides a holistic evaluation across various scenarios, including preference steering and sentiment following. We assess current state-of-the-art methods using our benchmark and show that they struggle to accurately discern user preferences. Therefore, we propose a new method named Mender ($\textbf{M}$ultimodal Prefer$\textbf{en}$ce $\textbf{d}$iscern$\textbf{er}$), which improves upon existing methods and achieves state-of-the-art performance on our benchmark. Our results show that Mender can be effectively guided by human preferences even though they have not been observed during training, paving the way toward more personalized sequential recommendation systems. We will open-source the code and benchmarks upon publication.
Abstract:Sequential dense retrieval models utilize advanced sequence learning techniques to compute item and user representations, which are then used to rank relevant items for a user through inner product computation between the user and all item representations. However, this approach requires storing a unique representation for each item, resulting in significant memory requirements as the number of items grow. In contrast, the recently proposed generative retrieval paradigm offers a promising alternative by directly predicting item indices using a generative model trained on semantic IDs that encapsulate items' semantic information. Despite its potential for large-scale applications, a comprehensive comparison between generative retrieval and sequential dense retrieval under fair conditions is still lacking, leaving open questions regarding performance, and computation trade-offs. To address this, we compare these two approaches under controlled conditions on academic benchmarks and propose LIGER (LeveragIng dense retrieval for GEnerative Retrieval), a hybrid model that combines the strengths of these two widely used methods. LIGER integrates sequential dense retrieval into generative retrieval, mitigating performance differences and enhancing cold-start item recommendation in the datasets evaluated. This hybrid approach provides insights into the trade-offs between these approaches and demonstrates improvements in efficiency and effectiveness for recommendation systems in small-scale benchmarks.
Abstract:In this paper, we investigate the task of general conversational image retrieval on open-domain images. The objective is to search for images based on interactive conversations between humans and computers. To advance this task, we curate a dataset called ChatSearch. This dataset includes a multi-round multimodal conversational context query for each target image, thereby requiring the retrieval system to find the accurate image from database. Simultaneously, we propose a generative retrieval model named ChatSearcher, which is trained end-to-end to accept/produce interleaved image-text inputs/outputs. ChatSearcher exhibits strong capability in reasoning with multimodal context and can leverage world knowledge to yield visual retrieval results. It demonstrates superior performance on the ChatSearch dataset and also achieves competitive results on other image retrieval tasks and visual conversation tasks. We anticipate that this work will inspire further research on interactive multimodal retrieval systems. Our dataset will be available at https://github.com/joez17/ChatSearch.
Abstract:Retriever Augmented Generation (RAG) systems have become pivotal in enhancing the capabilities of language models by incorporating external knowledge retrieval mechanisms. However, a significant challenge in deploying these systems in industry applications is the detection and mitigation of hallucinations: instances where the model generates information that is not grounded in the retrieved context. Addressing this issue is crucial for ensuring the reliability and accuracy of responses generated by large language models (LLMs) in diverse industry settings. Current hallucination detection techniques fail to deliver accuracy, low latency, and low cost simultaneously. We introduce Luna: a DeBERTA-large (440M) encoder, finetuned for hallucination detection in RAG settings. We demonstrate that Luna outperforms GPT-3.5 and commercial evaluation frameworks on the hallucination detection task, with 97% and 96% reduction in cost and latency, respectively. Luna is lightweight and generalizes across multiple industry verticals and out-of-domain data, making it an ideal candidate for industry LLM applications.
Abstract:To govern smart contracts running on Ethereum, multiple Ethereum Request for Comment (ERC) standards have been developed, each containing a set of rules to guide the behaviors of smart contracts. Violating the ERC rules could cause serious security issues and financial loss, signifying the importance of verifying smart contracts follow ERCs. Today's practices of such verification are to either manually audit each single contract or use expert-developed, limited-scope program-analysis tools, both of which are far from being effective in identifying ERC rule violations. This paper presents a tool named AuditGPT that leverages large language models (LLMs) to automatically and comprehensively verify ERC rules against smart contracts. To build AuditGPT, we first conduct an empirical study on 222 ERC rules specified in four popular ERCs to understand their content, their security impacts, their specification in natural language, and their implementation in Solidity. Guided by the study, we construct AuditGPT by separating the large, complex auditing process into small, manageable tasks and design prompts specialized for each ERC rule type to enhance LLMs' auditing performance. In the evaluation, AuditGPT successfully pinpoints 418 ERC rule violations and only reports 18 false positives, showcasing its effectiveness and accuracy. Moreover, AuditGPT beats an auditing service provided by security experts in effectiveness, accuracy, and cost, demonstrating its advancement over state-of-the-art smart-contract auditing practices.
Abstract:The demand for improved efficiency and accuracy in vaccine safety assessments is increasing. Here, we explore the application of computer vision technologies to automate the monitoring of experimental mice for potential side effects after vaccine administration. Traditional observation methods are labor-intensive and lack the capability for continuous monitoring. By deploying a computer vision system, our research aims to improve the efficiency and accuracy of vaccine safety assessments. The methodology involves training machine learning models on annotated video data of mice behaviors pre- and post-vaccination. Preliminary results indicate that computer vision effectively identify subtle changes, signaling possible side effects. Therefore, our approach has the potential to significantly enhance the monitoring process in vaccine trials in animals, providing a practical solution to the limitations of human observation.
Abstract:Building scalable vision-language models to learn from diverse, multimodal data remains an open challenge. In this paper, we introduce an Efficient Vision-languagE foundation model, namely EVE, which is one unified multimodal Transformer pre-trained solely by one unified pre-training task. Specifically, EVE encodes both vision and language within a shared Transformer network integrated with modality-aware sparse Mixture-of-Experts (MoE) modules, which capture modality-specific information by selectively switching to different experts. To unify pre-training tasks of vision and language, EVE performs masked signal modeling on image-text pairs to reconstruct masked signals, i.e., image pixels and text tokens, given visible signals. This simple yet effective pre-training objective accelerates training by 3.5x compared to the model pre-trained with Image-Text Contrastive and Image-Text Matching losses. Owing to the combination of the unified architecture and pre-training task, EVE is easy to scale up, enabling better downstream performance with fewer resources and faster training speed. Despite its simplicity, EVE achieves state-of-the-art performance on various vision-language downstream tasks, including visual question answering, visual reasoning, and image-text retrieval.
Abstract:Building general-purpose models that can perceive diverse real-world modalities and solve various tasks is an appealing target in artificial intelligence. In this paper, we present ChatBridge, a novel multimodal language model that leverages the expressive capabilities of language as the catalyst to bridge the gap between various modalities. We show that only language-paired two-modality data is sufficient to connect all modalities. ChatBridge leverages recent large language models (LLM) and extends their zero-shot capabilities to incorporate diverse multimodal inputs. ChatBridge undergoes a two-stage training. The first stage aligns each modality with language, which brings emergent multimodal correlation and collaboration abilities. The second stage instruction-finetunes ChatBridge to align it with user intent with our newly proposed multimodal instruction tuning dataset, named MULTIS, which covers a wide range of 16 multimodal tasks of text, image, video, and audio modalities. We show strong quantitative and qualitative results on zero-shot multimodal tasks covering text, image, video, and audio modalities. All codes, data, and models of ChatBridge will be open-sourced.
Abstract:Human activity recognition (HAR) is one of the core research themes in ubiquitous and wearable computing. With the shift to deep learning (DL) based analysis approaches, it has become possible to extract high-level features and perform classification in an end-to-end manner. Despite their promising overall capabilities, DL-based HAR may suffer from overfitting due to the notoriously small, often inadequate, amounts of labeled sample data that are available for typical HAR applications. In response to such challenges, we propose ConvBoost -- a novel, three-layer, structured model architecture and boosting framework for convolutional network based HAR. Our framework generates additional training data from three different perspectives for improved HAR, aiming to alleviate the shortness of labeled training data in the field. Specifically, with the introduction of three conceptual layers--Sampling Layer, Data Augmentation Layer, and Resilient Layer -- we develop three "boosters" -- R-Frame, Mix-up, and C-Drop -- to enrich the per-epoch training data by dense-sampling, synthesizing, and simulating, respectively. These new conceptual layers and boosters, that are universally applicable for any kind of convolutional network, have been designed based on the characteristics of the sensor data and the concept of frame-wise HAR. In our experimental evaluation on three standard benchmarks (Opportunity, PAMAP2, GOTOV) we demonstrate the effectiveness of our ConvBoost framework for HAR applications based on variants of convolutional networks: vanilla CNN, ConvLSTM, and Attention Models. We achieved substantial performance gains for all of them, which suggests that the proposed approach is generic and can serve as a practical solution for boosting the performance of existing ConvNet-based HAR models. This is an open-source project, and the code can be found at https://github.com/sshao2013/ConvBoost
Abstract:Medical image segmentation methods normally perform poorly when there is a domain shift between training and testing data. Unsupervised Domain Adaptation (UDA) addresses the domain shift problem by training the model using both labeled data from the source domain and unlabeled data from the target domain. Source-Free UDA (SFUDA) was recently proposed for UDA without requiring the source data during the adaptation, due to data privacy or data transmission issues, which normally adapts the pre-trained deep model in the testing stage. However, in real clinical scenarios of medical image segmentation, the trained model is normally frozen in the testing stage. In this paper, we propose Fourier Visual Prompting (FVP) for SFUDA of medical image segmentation. Inspired by prompting learning in natural language processing, FVP steers the frozen pre-trained model to perform well in the target domain by adding a visual prompt to the input target data. In FVP, the visual prompt is parameterized using only a small amount of low-frequency learnable parameters in the input frequency space, and is learned by minimizing the segmentation loss between the predicted segmentation of the prompted target image and reliable pseudo segmentation label of the target image under the frozen model. To our knowledge, FVP is the first work to apply visual prompts to SFUDA for medical image segmentation. The proposed FVP is validated using three public datasets, and experiments demonstrate that FVP yields better segmentation results, compared with various existing methods.