Abstract:User representation is crucial for recommendation systems as it helps to deliver personalized recommendations by capturing user preferences and behaviors in low-dimensional vectors. High-quality user embeddings can capture subtle preferences, enable precise similarity calculations, and adapt to changing preferences over time to maintain relevance. The effectiveness of recommendation systems depends significantly on the quality of user embedding. We propose to asynchronously learn high fidelity user embeddings for billions of users each day from sequence based multimodal user activities in Meta platforms through a Transformer-like large scale feature learning module. The async learned user representations embeddings (ALURE) are further converted to user similarity graphs through graph learning and then combined with user realtime activities to retrieval highly related ads candidates for the entire ads delivery system. Our method shows significant gains in both offline and online experiments.
Abstract:Beyond the great cognitive powers showcased by language models, it is crucial to scrutinize whether their reasoning capabilities stem from strong generalization or merely exposure to relevant data. As opposed to constructing increasingly complex logic, this paper probes into the boolean logic, the root capability of a logical reasoner. We find that any pre-trained language models even including large language models only behave like a random selector in the face of multi-nested boolean logic, a task that humans can handle with ease. To empower language models with this fundamental capability, this paper proposes a new self-supervised learning method \textit{Curriculum Logical Reasoning} (\textsc{Clr}), where we augment the training data with nested boolean logic chain step-by-step, and program the training from simpler logical patterns gradually to harder ones. This new training paradigm allows language models to effectively generalize to much harder and longer-hop logic, which can hardly be learned through naive training. Furthermore, we show that boolean logic is a great foundation for improving the subsequent general logical tasks.
Abstract:This paper studies Chinese Spelling Correction (CSC), which aims to detect and correct potential spelling errors in a given sentence. Current state-of-the-art methods regard CSC as a sequence tagging task and fine-tune BERT-based models on sentence pairs. However, we note a critical flaw in the process of tagging one character to another, that the correction is excessively conditioned on the error. This is opposite from human mindset, where individuals rephrase the complete sentence based on its semantics, rather than solely on the error patterns memorized before. Such a counter-intuitive learning process results in the bottleneck of generalizability and transferability of machine spelling correction. To address this, we propose $Rephrasing Language Modeling$ (ReLM), where the model is trained to rephrase the entire sentence by infilling additional slots, instead of character-to-character tagging. This novel training paradigm achieves the new state-of-the-art results across fine-tuned and zero-shot CSC benchmarks, outperforming previous counterparts by a large margin. Our method also learns transferable language representation when CSC is jointly trained with other tasks.
Abstract:To enhance the security of text CAPTCHAs, various methods have been employed, such as adding the interference lines on the text, randomly distorting the characters, and overlapping multiple characters. These methods partly increase the difficulty of automated segmentation and recognition attacks. However, facing the rapid development of the end-to-end breaking algorithms, their security has been greatly weakened. The diffusion model is a novel image generation model that can generate the text images with deep fusion of characters and background images. In this paper, an image-click CAPTCHA scheme called Diff-CAPTCHA is proposed based on denoising diffusion models. The background image and characters of the CAPTCHA are treated as a whole to guide the generation process of a diffusion model, thus weakening the character features available for machine learning, enhancing the diversity of character features in the CAPTCHA, and increasing the difficulty of breaking algorithms. To evaluate the security of Diff-CAPTCHA, this paper develops several attack methods, including end-to-end attacks based on Faster R-CNN and two-stage attacks, and Diff-CAPTCHA is compared with three baseline schemes, including commercial CAPTCHA scheme and security-enhanced CAPTCHA scheme based on style transfer. The experimental results show that diffusion models can effectively enhance CAPTCHA security while maintaining good usability in human testing.
Abstract:The prediction of mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD) is important for early treatment to prevent or slow the progression of AD. To accurately predict the MCI conversion to stable MCI or progressive MCI, we propose Triformer, a novel transformer-based framework with three specialized transformers to incorporate multi-model data. Triformer uses I) an image transformer to extract multi-view image features from medical scans, II) a clinical transformer to embed and correlate multi-modal clinical data, and III) a modality fusion transformer that produces an accurate prediction based on fusing the outputs from the image and clinical transformers. Triformer is evaluated on the Alzheimer's Disease Neuroimaging Initiative (ANDI)1 and ADNI2 datasets and outperforms previous state-of-the-art single and multi-modal methods.
Abstract:Spatial interpolation is a class of estimation problems where locations with known values are used to estimate values at other locations, with an emphasis on harnessing spatial locality and trends. Traditional Kriging methods have strong Gaussian assumptions, and as a result, often fail to capture complexities within the data. Inspired by the recent progress of graph neural networks, we introduce Kriging Convolutional Networks (KCN), a method of combining the advantages of Graph Convolutional Networks (GCN) and Kriging. Compared to standard GCNs, KCNs make direct use of neighboring observations when generating predictions. KCNs also contain the Kriging method as a specific configuration. We further improve the model's performance by adding attention. Empirically, we show that this model outperforms GCNs and Kriging in several applications. The implementation of KCN using PyTorch is publicized at the GitHub repository: https://github.com/tufts-ml/kcn-torch.
Abstract:Subgraph similarity search, one of the core problems in graph search, concerns whether a target graph approximately contains a query graph. The problem is recently touched by neural methods. However, current neural methods do not consider pruning the target graph, though pruning is critically important in traditional calculations of subgraph similarities. One obstacle to applying pruning in neural methods is {the discrete property of pruning}. In this work, we convert graph pruning to a problem of node relabeling and then relax it to a differentiable problem. Based on this idea, we further design a novel neural network to approximate a type of subgraph distance: the subgraph edit distance (SED). {In particular, we construct the pruning component using a neural structure, and the entire model can be optimized end-to-end.} In the design of the model, we propose an attention mechanism to leverage the information about the query graph and guide the pruning of the target graph. Moreover, we develop a multi-head pruning strategy such that the model can better explore multiple ways of pruning the target graph. The proposed model establishes new state-of-the-art results across seven benchmark datasets. Extensive analysis of the model indicates that the proposed model can reasonably prune the target graph for SED computation. The implementation of our algorithm is released at our Github repo: https://github.com/tufts-ml/Prune4SED.
Abstract:Accurate medical classification requires a large number of multi-modal data, and in many cases, in different formats. Previous studies have shown promising results when using multi-modal data, outperforming single-modality models on when classifying disease such as AD. However, those models are usually not flexible enough to handle missing modalities. Currently, the most common workaround is excluding samples with missing modalities which leads to considerable data under-utilisation. Adding to the fact that labelled medical images are already scarce, the performance of data-driven methods like deep learning is severely hampered. Therefore, a multi-modal method that can gracefully handle missing data in various clinical settings is highly desirable. In this paper, we present the Multi-Modal Mixing Transformer (3MT), a novel Transformer for disease classification based on multi-modal data. In this work, we test it for \ac{AD} or \ac{CN} classification using neuroimaging data, gender, age and MMSE scores. The model uses a novel Cascaded Modality Transformers architecture with cross-attention to incorporate multi-modal information for more informed predictions. Auxiliary outputs and a novel modality dropout mechanism were incorporated to ensure an unprecedented level of modality independence and robustness. The result is a versatile network that enables the mixing of an unlimited number of modalities with different formats and full data utilization. 3MT was first tested on the ADNI dataset and achieved state-of-the-art test accuracy of $0.987\pm0.0006$. To test its generalisability, 3MT was directly applied to the AIBL after training on the ADNI dataset, and achieved a test accuracy of $0.925\pm0.0004$ without fine-tuning. Finally, we show that Grad-CAM visualizations are also possible with our model for explainable results.
Abstract:In medical image analysis, the subtle visual characteristics of many diseases are challenging to discern, particularly due to the lack of paired data. For example, in mild Alzheimer's Disease (AD), brain tissue atrophy can be difficult to observe from pure imaging data, especially without paired AD and Cognitively Normal ( CN ) data for comparison. This work presents Disease Discovery GAN ( DiDiGAN), a weakly-supervised style-based framework for discovering and visualising subtle disease features. DiDiGAN learns a disease manifold of AD and CN visual characteristics, and the style codes sampled from this manifold are imposed onto an anatomical structural "blueprint" to synthesise paired AD and CN magnetic resonance images (MRIs). To suppress non-disease-related variations between the generated AD and CN pairs, DiDiGAN leverages a structural constraint with cycle consistency and anti-aliasing to enforce anatomical correspondence. When tested on the Alzheimer's Disease Neuroimaging Initiative ( ADNI) dataset, DiDiGAN showed key AD characteristics (reduced hippocampal volume, ventricular enlargement, and atrophy of cortical structures) through synthesising paired AD and CN scans. The qualitative results were backed up by automated brain volume analysis, where systematic pair-wise reductions in brain tissue structures were also measured
Abstract:Recent works leveraging Graph Neural Networks to approach graph matching tasks have shown promising results. Recent progress in learning discrete distributions poses new opportunities for learning graph matching models. In this work, we propose a new model, Stochastic Iterative Graph MAtching (SIGMA), to address the graph matching problem. Our model defines a distribution of matchings for a graph pair so the model can explore a wide range of possible matchings. We further introduce a novel multi-step matching procedure, which learns how to refine a graph pair's matching results incrementally. The model also includes dummy nodes so that the model does not have to find matchings for nodes without correspondence. We fit this model to data via scalable stochastic optimization. We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications. Across all tasks, our results show that SIGMA can produce significantly improved graph matching results compared to state-of-the-art models. Ablation studies verify that each of our components (stochastic training, iterative matching, and dummy nodes) offers noticeable improvement.