Abstract:Constructing high resolution air pollution maps at lower cost is crucial for sustainable city management and public health risk assessment. However, traditional fixed-site monitoring lacks spatial coverage, while mobile low-cost sensors exhibit significant data instability. This study integrates PM2.5 data from 320 taxi-mounted mobile low-cost sensors and 52 fixed monitoring stations to address these limitations. By employing the machine learning methods, an appropriate mapping relationship was established between fixed and mobile monitoring concentration. The resulting pollution maps achieved 500-meter spatial and 5-minute temporal resolutions, showing close alignment with fixed monitoring data (+4.35% bias) but significant deviation from raw mobile data (-31.77%). The fused map exhibits the fine-scale spatial variability also observed in the mobile pollution map, while showing the stable temporal variability closer to that of the fixed pollution map (fixed: 1.12 plus or minus 0.73%, mobile: 3.15 plus or minus 2.44%, mapped: 1.01 plus or minus 0.65%). These findings demonstrate the potential of large-scale mobile low-cost sensor networks for high-resolution air quality mapping, supporting targeted urban environmental governance and health risk mitigation.
Abstract:Facial image retrieval plays a significant role in forensic investigations where an untrained witness tries to identify a suspect from a massive pool of images. However, due to the difficulties in describing human facial appearances verbally and directly, people naturally tend to depict by referring to well-known existing images and comparing specific areas of faces with them and it is also challenging to provide complete comparison at each time. Therefore, we propose an end-to-end framework to retrieve facial images with relevance feedback progressively provided by the witness, enabling an exploitation of history information during multiple rounds and an interactive and iterative approach to retrieving the mental image. With no need of any extra annotations, our model can be applied at the cost of a little response effort. We experiment on \texttt{CelebA} and evaluate the performance by ranking percentile and achieve 99\% under the best setting. Since this topic remains little explored to the best of our knowledge, we hope our work can serve as a stepping stone for further research.
Abstract:Existing recommendation algorithms mostly focus on optimizing traditional recommendation measures, such as the accuracy of rating prediction in terms of RMSE or the quality of top-$k$ recommendation lists in terms of precision, recall, MAP, etc. However, an important expectation for commercial recommendation systems is to improve the final revenue/profit of the system. Traditional recommendation targets such as rating prediction and top-$k$ recommendation are not directly related to this goal. In this work, we blend the fundamental concepts in online advertising and micro-economics into personalized recommendation for profit maximization. Specifically, we propose value-aware recommendation based on reinforcement learning, which directly optimizes the economic value of candidate items to generate the recommendation list. In particular, we generalize the basic concept of click conversion rate (CVR) in computational advertising into the conversation rate of an arbitrary user action (XVR) in E-commerce, where the user actions can be clicking, adding to cart, adding to wishlist, etc. In this way, each type of user action is mapped to its monetized economic value. Economic values of different user actions are further integrated as the reward of a ranking list, and reinforcement learning is used to optimize the recommendation list for the maximum total value. Experimental results in both offline benchmarks and online commercial systems verified the improved performance of our framework, in terms of both traditional top-$k$ ranking tasks and the economic profits of the system.