Abstract:Spontaneous retinal Venous Pulsations (SVP) are rhythmic changes in the caliber of the central retinal vein and are observed in the optic disc region (ODR) of the retina. Its absence is a critical indicator of various ocular or neurological abnormalities. Recent advances in imaging technology have enabled the development of portable smartphone-based devices for observing the retina and assessment of SVPs. However, the quality of smartphone-based retinal videos is often poor due to noise and image jitting, which in return, can severely obstruct the observation of SVPs. In this work, we developed a fully automated retinal video stabilization method that enables the examination of SVPs captured by various mobile devices. Specifically, we first propose an ODR Spatio-Temporal Localization (ODR-STL) module to localize visible ODR and remove noisy and jittering frames. Then, we introduce a Noise-Aware Template Matching (NATM) module to stabilize high-quality video segments at a fixed position in the field of view. After the processing, the SVPs can be easily observed in the stabilized videos, significantly facilitating user observations. Furthermore, our method is cost-effective and has been tested in both subjective and objective evaluations. Both of the evaluations support its effectiveness in facilitating the observation of SVPs. This can improve the timely diagnosis and treatment of associated diseases, making it a valuable tool for eye health professionals.
Abstract:In this work, we revisit the semi-supervised learning (SSL) problem from a new perspective of explicitly reducing empirical distribution mismatch between labeled and unlabeled samples. Benefited from this new perspective, we first propose a new deep semi-supervised learning framework called Semi-supervised Learning by Empirical Distribution Alignment (SLEDA), in which existing technologies from the domain adaptation community can be readily used to address the semi-supervised learning problem through reducing the empirical distribution distance between labeled and unlabeled data. Based on this framework, we also develop a new theoretical generalization bound for the research community to better understand the semi-supervised learning problem, in which we show the generalization error of semi-supervised learning can be effectively bounded by minimizing the training error on labeled data and the empirical distribution distance between labeled and unlabeled data. Building upon our new framework and the theoretical bound, we develop a simple and effective deep semi-supervised learning method called Augmented Distribution Alignment Network (ADA-Net) by simultaneously adopting the well-established adversarial training strategy from the domain adaptation community and a simple sample interpolation strategy for data augmentation. Additionally, we incorporate both strategies in our ADA-Net into two exiting SSL methods to further improve their generalization capability, which indicates that our new framework provides a complementary solution for solving the SSL problem. Our comprehensive experimental results on two benchmark datasets SVHN and CIFAR-10 for the semi-supervised image recognition task and another two benchmark datasets ModelNet40 and ShapeNet55 for the semi-supervised point cloud recognition task demonstrate the effectiveness of our proposed framework for SSL.