Abstract:The green vehicle routing problem with private capacitated alternative fuel stations (GVRP-PCAFS) extends the traditional green vehicle routing problem by considering refueling stations limited capacity, where a limited number of vehicles can refuel simultaneously with additional vehicles must wait. This feature presents new challenges for route planning, as waiting times at stations must be managed while keeping route durations within limits and reducing total travel distance. This article presents METS, a novel memetic algorithm (MA) with separate constraint-based tour segmentation (SCTS) and efficient local search (ELS) for solving GVRP-PCAFS. METS combines global and local search effectively through three novelties. For global search, the SCTS strategy splits giant tours to generate diverse solutions, and the search process is guided by a comprehensive fitness evaluation function to dynamically control feasibility and diversity to produce solutions that are both diverse and near-feasible. For local search, ELS incorporates tailored move operators with constant-time move evaluation mechanisms, enabling efficient exploration of large solution neighborhoods. Experimental results demonstrate that METS discovers 31 new best-known solutions out of 40 instances in existing benchmark sets, achieving substantial improvements over current state-of-the-art methods. Additionally, a new large-scale benchmark set based on real-world logistics data is introduced to facilitate future research.
Abstract:While safety-aligned large language models (LLMs) are increasingly used as the cornerstone for powerful systems such as multi-agent frameworks to solve complex real-world problems, they still suffer from potential adversarial queries, such as jailbreak attacks, which attempt to induce harmful content. Researching attack methods allows us to better understand the limitations of LLM and make trade-offs between helpfulness and safety. However, existing jailbreak attacks are primarily based on opaque optimization techniques (e.g. token-level gradient descent) and heuristic search methods like LLM refinement, which fall short in terms of transparency, transferability, and computational cost. In light of these limitations, we draw inspiration from the evolution and infection processes of biological viruses and propose LLM-Virus, a jailbreak attack method based on evolutionary algorithm, termed evolutionary jailbreak. LLM-Virus treats jailbreak attacks as both an evolutionary and transfer learning problem, utilizing LLMs as heuristic evolutionary operators to ensure high attack efficiency, transferability, and low time cost. Our experimental results on multiple safety benchmarks show that LLM-Virus achieves competitive or even superior performance compared to existing attack methods.
Abstract:Motion prediction plays an essential role in autonomous driving systems, enabling autonomous vehicles to achieve more accurate local-path planning and driving decisions based on predictions of the surrounding vehicles. However, existing methods neglect the potential missing values caused by object occlusion, perception failures, etc., which inevitably degrades the trajectory prediction performance in real traffic scenarios. To address this limitation, we propose a novel end-to-end framework for incomplete vehicle trajectory prediction, named Multi-scale Temporal Fusion Transformer (MTFT), which consists of the Multi-scale Attention Head (MAH) and the Continuity Representation-guided Multi-scale Fusion (CRMF) module. Specifically, the MAH leverages the multi-head attention mechanism to parallelly capture multi-scale motion representation of trajectory from different temporal granularities, thus mitigating the adverse effect of missing values on prediction. Furthermore, the multi-scale motion representation is input into the CRMF module for multi-scale fusion to obtain the robust temporal feature of the vehicle. During the fusion process, the continuity representation of vehicle motion is first extracted across time steps to guide the fusion, ensuring that the resulting temporal feature incorporates both detailed information and the overall trend of vehicle motion, which facilitates the accurate decoding of future trajectory that is consistent with the vehicle's motion trend. We evaluate the proposed model on four datasets derived from highway and urban traffic scenarios. The experimental results demonstrate its superior performance in the incomplete vehicle trajectory prediction task compared with state-of-the-art models, e.g., a comprehensive performance improvement of more than 39% on the HighD dataset.
Abstract:Recent advancements in instructing Large Language Models (LLMs) to utilize external tools and execute multi-step plans have significantly enhanced their ability to solve intricate tasks, ranging from mathematical problems to creative writing. Yet, there remains a notable gap in studying the capacity of LLMs in responding to personalized queries such as a recommendation request. To bridge this gap, we have designed an LLM-powered autonomous recommender agent, RecMind, which is capable of providing precise personalized recommendations through careful planning, utilizing tools for obtaining external knowledge, and leveraging individual data. We propose a novel algorithm, Self-Inspiring, to improve the planning ability of the LLM agent. At each intermediate planning step, the LLM 'self-inspires' to consider all previously explored states to plan for next step. This mechanism greatly improves the model's ability to comprehend and utilize historical planning information for recommendation. We evaluate RecMind's performance in various recommendation scenarios, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization. Our experiment shows that RecMind outperforms existing zero/few-shot LLM-based recommendation methods in different recommendation tasks and achieves competitive performance to a recent model P5, which requires fully pre-train for the recommendation tasks.
Abstract:Recommender systems have found significant commercial success but still struggle with integrating new users. Since users often interact with content in different domains, it is possible to leverage a user's interactions in previous domains to improve that user's recommendations in a new one (multi-domain recommendation). A separate research thread on knowledge graph enhancement uses external knowledge graphs to improve single domain recommendations (knowledge graph enhancement). Both research threads incorporate related information to improve predictions in a new domain. We propose in this work to unify these approaches: Using information from interactions in other domains as well as external knowledge graphs to make predictions in a new domain that would be impossible with either information source alone. We apply these ideas to a dataset derived from millions of users' requests for content across three domains (videos, music, and books) in a live virtual assistant application. We demonstrate the advantage of combining knowledge graph enhancement with previous multi-domain recommendation techniques to provide better overall recommendations as well as for better recommendations on new users of a domain.
Abstract:Query Rewriting (QR) plays a critical role in large-scale dialogue systems for reducing frictions. When there is an entity error, it imposes extra challenges for a dialogue system to produce satisfactory responses. In this work, we propose KG-ECO: Knowledge Graph enhanced Entity COrrection for query rewriting, an entity correction system with corrupt entity span detection and entity retrieval/re-ranking functionalities. To boost the model performance, we incorporate Knowledge Graph (KG) to provide entity structural information (neighboring entities encoded by graph neural networks) and textual information (KG entity descriptions encoded by RoBERTa). Experimental results show that our approach yields a clear performance gain over two baselines: utterance level QR and entity correction without utilizing KG information. The proposed system is particularly effective for few-shot learning cases where target entities are rarely seen in training or there is a KG relation between the target entity and other contextual entities in the query.
Abstract:While matrix variate regression models have been studied in many existing works, classical statistical and computational methods for the analysis of the regression coefficient estimation are highly affected by high dimensional and noisy matrix-valued predictors. To address these issues, this paper proposes a framework of matrix variate regression models based on a rank constraint, vector regularization (e.g., sparsity), and a general loss function with three special cases considered: ordinary matrix regression, robust matrix regression, and matrix logistic regression. We also propose an alternating projected gradient descent algorithm. Based on analyzing our objective functions on manifolds with bounded curvature, we show that the algorithm is guaranteed to converge, all accumulation points of the iterates have estimation errors in the order of $O(1/\sqrt{n})$ asymptotically and substantially attaining the minimax rate. Our theoretical analysis can be applied to general optimization problems on manifolds with bounded curvature and can be considered an important technical contribution to this work. We validate the proposed method through simulation studies and real image data examples.
Abstract:Paraphrase generation is a longstanding NLP task that has diverse applications for downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have been proposed to address this issue, they may fail to generate meaningful paraphrases due to the lack of supervision signals. In this work, we go beyond the existing paradigms and propose a novel approach to generate high-quality paraphrases with weak supervision data. Specifically, we tackle the weakly-supervised paraphrase generation problem by: (1) obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion; and (2) developing a meta-learning framework to progressively select valuable samples for fine-tuning a pre-trained language model, i.e., BART, on the sentential paraphrasing task. We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.
Abstract:The paper considers a Mixture Multilayer Stochastic Block Model (MMLSBM), where layers can be partitioned into groups of similar networks, and networks in each group are equipped with a distinct Stochastic Block Model. The goal is to partition the multilayer network into clusters of similar layers, and to identify communities in those layers. Jing et al. (2020) introduced the MMLSBM and developed a clustering methodology, TWIST, based on regularized tensor decomposition. The present paper proposes a different technique, an alternating minimization algorithm (ALMA), that aims at simultaneous recovery of the layer partition, together with estimation of the matrices of connection probabilities of the distinct layers. Compared to TWIST, ALMA achieves higher accuracy both theoretically and numerically.
Abstract:Query rewriting (QR) systems are widely used to reduce the friction caused by errors in a spoken language understanding pipeline. However, the underlying supervised models require a large number of labeled pairs, and these pairs are hard and costly to be collected. Therefore, We propose an augmentation framework that learns patterns from existing training pairs and generates rewrite candidates from rewrite labels inversely to compensate for insufficient QR training data. The proposed framework casts the augmentation problem as a sequence-to-sequence generation task and enforces the optimization process with a policy gradient technique for controllable rewarding. This approach goes beyond the traditional heuristics or rule-based augmentation methods and is not constrained to generate predefined patterns of swapping/replacing words. Our experimental results show its effectiveness compared with a fully trained QR baseline and demonstrate its potential application in boosting the QR performance on low-resource domains or locales.