ADNI
Abstract:Diffusion models learn to denoise data and the trained denoiser is then used to generate new samples from the data distribution. In this paper, we revisit the diffusion sampling process and identify a fundamental cause of sample quality degradation: the denoiser is poorly estimated in regions that are far Outside Of the training Distribution (OOD), and the sampling process inevitably evaluates in these OOD regions. This can become problematic for all sampling methods, especially when we move to parallel sampling which requires us to initialize and update the entire sample trajectory of dynamics in parallel, leading to many OOD evaluations. To address this problem, we introduce a new self-supervised training objective that differentiates the levels of noise added to a sample, leading to improved OOD denoising performance. The approach is based on our observation that diffusion models implicitly define a log-likelihood ratio that distinguishes distributions with different amounts of noise, and this expression depends on denoiser performance outside the standard training distribution. We show by diverse experiments that the proposed contrastive diffusion training is effective for both sequential and parallel settings, and it improves the performance and speed of parallel samplers significantly.
Abstract:Large language models (LLMs) have demonstrated impressive performance on a number of natural language processing tasks, such as question answering and text summarization. However, their performance on sequence labeling tasks such as intent classification and slot filling (IC-SF), which is a central component in personal assistant systems, lags significantly behind discriminative models. Furthermore, there is a lack of substantive research on the robustness of LLMs to various perturbations in the input prompts. The contributions of this paper are three-fold. First, we show that fine-tuning sufficiently large LLMs can produce IC-SF performance comparable to discriminative models. Next, we systematically analyze the performance deterioration of those fine-tuned models due to three distinct yet relevant types of input perturbations - oronyms, synonyms, and paraphrasing. Finally, we propose an efficient mitigation approach, Prompt Perturbation Consistency Learning (PPCL), which works by regularizing the divergence between losses from clean and perturbed samples. Our experiments demonstrate that PPCL can recover on average 59% and 69% of the performance drop for IC and SF tasks, respectively. Furthermore, PPCL beats the data augmentation approach while using ten times fewer augmented data samples.
Abstract:Quantifying the degree of similarity between images is a key copyright issue for image-based machine learning. In legal doctrine however, determining the degree of similarity between works requires subjective analysis, and fact-finders (judges and juries) can demonstrate considerable variability in these subjective judgement calls. Images that are structurally similar can be deemed dissimilar, whereas images of completely different scenes can be deemed similar enough to support a claim of copying. We seek to define and compute a notion of "conceptual similarity" among images that captures high-level relations even among images that do not share repeated elements or visually similar components. The idea is to use a base multi-modal model to generate "explanations" (captions) of visual data at increasing levels of complexity. Then, similarity can be measured by the length of the caption needed to discriminate between the two images: Two highly dissimilar images can be discriminated early in their description, whereas conceptually dissimilar ones will need more detail to be distinguished. We operationalize this definition and show that it correlates with subjective (averaged human evaluation) assessment, and beats existing baselines on both image-to-image and text-to-text similarity benchmarks. Beyond just providing a number, our method also offers interpretability by pointing to the specific level of granularity of the description where the source data are differentiated.
Abstract:The widespread use of Text-to-Image (T2I) models in content generation requires careful examination of their safety, including their robustness to adversarial attacks. Despite extensive research into this, the reasons for their effectiveness are underexplored. This paper presents an empirical study on adversarial attacks against T2I models, focusing on analyzing factors associated with attack success rates (ASRs). We introduce a new attack objective - entity swapping using adversarial suffixes and two gradient-based attack algorithms. Human and automatic evaluations reveal the asymmetric nature of ASRs on entity swap: for example, it is easier to replace "human" with "robot" in the prompt "a human dancing in the rain." with an adversarial suffix but is significantly harder in reverse. We further propose probing metrics to establish indicative signals from the model's beliefs to the adversarial ASR. We identify conditions resulting in a 60% success probability for adversarial attacks and others where this likelihood drops below 5%.
Abstract:Denoising diffusion models enable conditional generation and density modeling of complex relationships like images and text. However, the nature of the learned relationships is opaque making it difficult to understand precisely what relationships between words and parts of an image are captured, or to predict the effect of an intervention. We illuminate the fine-grained relationships learned by diffusion models by noticing a precise relationship between diffusion and information decomposition. Exact expressions for mutual information and conditional mutual information can be written in terms of the denoising model. Furthermore, pointwise estimates can be easily estimated as well, allowing us to ask questions about the relationships between specific images and captions. Decomposing information even further to understand which variables in a high-dimensional space carry information is a long-standing problem. For diffusion models, we show that a natural non-negative decomposition of mutual information emerges, allowing us to quantify informative relationships between words and pixels in an image. We exploit these new relations to measure the compositional understanding of diffusion models, to do unsupervised localization of objects in images, and to measure effects when selectively editing images through prompt interventions.
Abstract:Causal inference of exact individual treatment outcomes in the presence of hidden confounders is rarely possible. Instead, recent work has adapted conformal prediction to produce outcome intervals. Unfortunately this family of methods tends to be overly conservative, sometimes giving uninformative intervals. We introduce an alternative approach termed Caus-Modens, for characterizing causal outcome intervals by modulated ensembles. Motivated from Bayesian statistics and ensembled uncertainty quantification, Caus-Modens gives tighter outcome intervals in practice, measured by the necessary interval size to achieve sufficient coverage on three separate benchmarks. The last benchmark is a novel usage of GPT-4 for observational experiments with unknown but probeable ground truth.
Abstract:Recommender systems have found significant commercial success but still struggle with integrating new users. Since users often interact with content in different domains, it is possible to leverage a user's interactions in previous domains to improve that user's recommendations in a new one (multi-domain recommendation). A separate research thread on knowledge graph enhancement uses external knowledge graphs to improve single domain recommendations (knowledge graph enhancement). Both research threads incorporate related information to improve predictions in a new domain. We propose in this work to unify these approaches: Using information from interactions in other domains as well as external knowledge graphs to make predictions in a new domain that would be impossible with either information source alone. We apply these ideas to a dataset derived from millions of users' requests for content across three domains (videos, music, and books) in a live virtual assistant application. We demonstrate the advantage of combining knowledge graph enhancement with previous multi-domain recommendation techniques to provide better overall recommendations as well as for better recommendations on new users of a domain.
Abstract:Efficient finetuning of pretrained language transformers is becoming increasingly prevalent for solving natural language processing tasks. While effective, it can still require a large number of tunable parameters. This can be a drawback for low-resource applications and training with differential-privacy constraints, where excessive noise may be introduced during finetuning. To this end, we propose a novel language transformer finetuning strategy that introduces task-specific parameters in multiple transformer layers. These parameters are derived from fixed random projections of a single trainable vector, enabling finetuning with significantly fewer parameters while maintaining performance. We achieve within 5% of full finetuning performance on GLUE tasks with as few as 4,100 parameters per task, outperforming other parameter-efficient finetuning approaches that use a similar number of per-task parameters. Besides, the random projections can be precomputed at inference, avoiding additional computational latency. All these make our method particularly appealing for low-resource applications. Finally, our method achieves the best or comparable utility compared to several recent finetuning methods when training with the same privacy constraints, underscoring its effectiveness and potential real-world impact.
Abstract:Parameter-efficient tuning (PET) methods fit pre-trained language models (PLMs) to downstream tasks by either computing a small compressed update for a subset of model parameters, or appending and fine-tuning a small number of new model parameters to the pre-trained network. Hand-designed PET architectures from the literature perform well in practice, but have the potential to be improved via automated neural architecture search (NAS). We propose an efficient NAS method for learning PET architectures via structured and unstructured pruning. We present experiments on GLUE demonstrating the effectiveness of our algorithm and discuss how PET architectural design choices affect performance in practice.
Abstract:Deep Neural Networks (DNNs) are becoming integral components of real world services relied upon by millions of users. Unfortunately, architects of these systems can find it difficult to ensure reliable performance as irrelevant details like random initialization can unexpectedly change the outputs of a trained system with potentially disastrous consequences. We formulate the model stability problem by studying how the predictions of a model change, even when it is retrained on the same data, as a consequence of stochasticity in the training process. For Natural Language Understanding (NLU) tasks, we find instability in predictions for a significant fraction of queries. We formulate principled metrics, like per-sample ``label entropy'' across training runs or within a single training run, to quantify this phenomenon. Intriguingly, we find that unstable predictions do not appear at random, but rather appear to be clustered in data-specific ways. We study data-agnostic regularization methods to improve stability and propose new data-centric methods that exploit our local stability estimates. We find that our localized data-specific mitigation strategy dramatically outperforms data-agnostic methods, and comes within 90% of the gold standard, achieved by ensembling, at a fraction of the computational cost