Abstract:Diffusion models learn to denoise data and the trained denoiser is then used to generate new samples from the data distribution. In this paper, we revisit the diffusion sampling process and identify a fundamental cause of sample quality degradation: the denoiser is poorly estimated in regions that are far Outside Of the training Distribution (OOD), and the sampling process inevitably evaluates in these OOD regions. This can become problematic for all sampling methods, especially when we move to parallel sampling which requires us to initialize and update the entire sample trajectory of dynamics in parallel, leading to many OOD evaluations. To address this problem, we introduce a new self-supervised training objective that differentiates the levels of noise added to a sample, leading to improved OOD denoising performance. The approach is based on our observation that diffusion models implicitly define a log-likelihood ratio that distinguishes distributions with different amounts of noise, and this expression depends on denoiser performance outside the standard training distribution. We show by diverse experiments that the proposed contrastive diffusion training is effective for both sequential and parallel settings, and it improves the performance and speed of parallel samplers significantly.
Abstract:Interpretable policy learning seeks to estimate intelligible decision policies from observed actions; however, existing models fall short by forcing a tradeoff between accuracy and interpretability. This tradeoff limits data-driven interpretations of human decision-making process. e.g. to audit medical decisions for biases and suboptimal practices, we require models of decision processes which provide concise descriptions of complex behaviors. Fundamentally, existing approaches are burdened by this tradeoff because they represent the underlying decision process as a universal policy, when in fact human decisions are dynamic and can change drastically with contextual information. Thus, we propose Contextualized Policy Recovery (CPR), which re-frames the problem of modeling complex decision processes as a multi-task learning problem in which complex decision policies are comprised of context-specific policies. CPR models each context-specific policy as a linear observation-to-action mapping, and generates new decision models $\textit{on-demand}$ as contexts are updated with new observations. CPR is compatible with fully offline and partially observable decision environments, and can be tailored to incorporate any recurrent black-box model or interpretable decision model. We assess CPR through studies on simulated and real data, achieving state-of-the-art performance on the canonical tasks of predicting antibiotic prescription in intensive care units ($+22\%$ AUROC vs. previous SOTA) and predicting MRI prescription for Alzheimer's patients ($+7.7\%$ AUROC vs. previous SOTA). With this improvement in predictive performance, CPR closes the accuracy gap between interpretable and black-box methods for policy learning, allowing high-resolution exploration and analysis of context-specific decision models.
Abstract:Graph Structure Learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despite the proliferation of GSL methods developed in recent years, there is no standard experimental setting or fair comparison for performance evaluation, which creates a great obstacle to understanding the progress in this field. To fill this gap, we systematically analyze the performance of GSL in different scenarios and develop a comprehensive Graph Structure Learning Benchmark (GSLB) curated from 20 diverse graph datasets and 16 distinct GSL algorithms. Specifically, GSLB systematically investigates the characteristics of GSL in terms of three dimensions: effectiveness, robustness, and complexity. We comprehensively evaluate state-of-the-art GSL algorithms in node- and graph-level tasks, and analyze their performance in robust learning and model complexity. Further, to facilitate reproducible research, we have developed an easy-to-use library for training, evaluating, and visualizing different GSL methods. Empirical results of our extensive experiments demonstrate the ability of GSL and reveal its potential benefits on various downstream tasks, offering insights and opportunities for future research. The code of GSLB is available at: https://github.com/GSL-Benchmark/GSLB.
Abstract:Modeling sequential patterns from data is at the core of various time series forecasting tasks. Deep learning models have greatly outperformed many traditional models, but these black-box models generally lack explainability in prediction and decision making. To reveal the underlying trend with understandable mathematical expressions, scientists and economists tend to use partial differential equations (PDEs) to explain the highly nonlinear dynamics of sequential patterns. However, it usually requires domain expert knowledge and a series of simplified assumptions, which is not always practical and can deviate from the ever-changing world. Is it possible to learn the differential relations from data dynamically to explain the time-evolving dynamics? In this work, we propose an learning framework that can automatically obtain interpretable PDE models from sequential data. Particularly, this framework is comprised of learnable differential blocks, named $P$-blocks, which is proved to be able to approximate any time-evolving complex continuous functions in theory. Moreover, to capture the dynamics shift, this framework introduces a meta-learning controller to dynamically optimize the hyper-parameters of a hybrid PDE model. Extensive experiments on times series forecasting of financial, engineering, and health data show that our model can provide valuable interpretability and achieve comparable performance to state-of-the-art models. From empirical studies, we find that learning a few differential operators may capture the major trend of sequential dynamics without massive computational complexity.
Abstract:Deep learning models have achieved promising disease prediction performance of the Electronic Health Records (EHR) of patients. However, most models developed under the I.I.D. hypothesis fail to consider the agnostic distribution shifts, diminishing the generalization ability of deep learning models to Out-Of-Distribution (OOD) data. In this setting, spurious statistical correlations that may change in different environments will be exploited, which can cause sub-optimal performances of deep learning models. The unstable correlation between procedures and diagnoses existed in the training distribution can cause spurious correlation between historical EHR and future diagnosis. To address this problem, we propose to use a causal representation learning method called Causal Healthcare Embedding (CHE). CHE aims at eliminating the spurious statistical relationship by removing the dependencies between diagnoses and procedures. We introduce the Hilbert-Schmidt Independence Criterion (HSIC) to measure the degree of independence between the embedded diagnosis and procedure features. Based on causal view analyses, we perform the sample weighting technique to get rid of such spurious relationship for the stable learning of EHR across different environments. Moreover, our proposed CHE method can be used as a flexible plug-and-play module that can enhance existing deep learning models on EHR. Extensive experiments on two public datasets and five state-of-the-art baselines unequivocally show that CHE can improve the prediction accuracy of deep learning models on out-of-distribution data by a large margin. In addition, the interpretability study shows that CHE could successfully leverage causal structures to reflect a more reasonable contribution of historical records for predictions.
Abstract:Modeling users' dynamic preferences from historical behaviors lies at the core of modern recommender systems. Due to the diverse nature of user interests, recent advances propose the multi-interest networks to encode historical behaviors into multiple interest vectors. In real scenarios, the corresponding items of captured interests are usually retrieved together to get exposure and collected into training data, which produces dependencies among interests. Unfortunately, multi-interest networks may incorrectly concentrate on subtle dependencies among captured interests. Misled by these dependencies, the spurious correlations between irrelevant interests and targets are captured, resulting in the instability of prediction results when training and test distributions do not match. In this paper, we introduce the widely used Hilbert-Schmidt Independence Criterion (HSIC) to measure the degree of independence among captured interests and empirically show that the continuous increase of HSIC may harm model performance. Based on this, we propose a novel multi-interest network, named DEep Stable Multi-Interest Learning (DESMIL), which tries to eliminate the influence of subtle dependencies among captured interests via learning weights for training samples and make model concentrate more on underlying true causation. We conduct extensive experiments on public recommendation datasets, a large-scale industrial dataset and the synthetic datasets which simulate the out-of-distribution data. Experimental results demonstrate that our proposed DESMIL outperforms state-of-the-art models by a significant margin. Besides, we also conduct comprehensive model analysis to reveal the reason why DESMIL works to a certain extent.
Abstract:In financial credit scoring, loan applications may be approved or rejected. We can only observe default/non-default labels for approved samples but have no observations for rejected samples, which leads to missing-not-at-random selection bias. Machine learning models trained on such biased data are inevitably unreliable. In this work, we find that the default/non-default classification task and the rejection/approval classification task are highly correlated, according to both real-world data study and theoretical analysis. Consequently, the learning of default/non-default can benefit from rejection/approval. Accordingly, we for the first time propose to model the biased credit scoring data with Multi-Task Learning (MTL). Specifically, we propose a novel Reject-aware Multi-Task Network (RMT-Net), which learns the task weights that control the information sharing from the rejection/approval task to the default/non-default task by a gating network based on rejection probabilities. RMT-Net leverages the relation between the two tasks that the larger the rejection probability, the more the default/non-default task needs to learn from the rejection/approval task. Furthermore, we extend RMT-Net to RMT-Net++ for modeling scenarios with multiple rejection/approval strategies. Extensive experiments are conducted on several datasets, and strongly verifies the effectiveness of RMT-Net on both approved and rejected samples. In addition, RMT-Net++ further improves RMT-Net's performances.
Abstract:Sequential recommendation (SR) aims to model users' dynamic preferences from their historical interactions. Recently, Transformer and convolution neural networks (CNNs) have shown great success in learning representations for SR. Nevertheless, Transformer mainly focus on capturing content-based global interactions, while CNNs effectively exploit local features in practical recommendation scenarios. Thus, how to effectively aggregate CNNs and Transformer to model both \emph{local} and \emph{global} dependencies of historical item sequence still remains an open challenge and is rarely studied in SR. To this regard, we inject locality inductive bias into Transformer by combining its global attention mechanism with a local convolutional filter, and adaptively determine the mixing importance on a personalized basis through a module and layer-aware adaptive mixture units, named AdaMCT. Moreover, considering that softmax-based attention may encourage unimodal activation, we introduce the Squeeze-Excitation Attention (with sigmoid activation) into sequential recommendation to capture multiple relevant items (keys) simultaneously. Extensive experiments on three widely used benchmark datasets demonstrate that AdaMCT significantly outperforms the previous Transformer and CNNs-based models by an average of 18.46% and 60.85% respectively in terms of NDCG@5 and achieves state-of-the-art performance.
Abstract:Sequential recommendation can capture user chronological preferences from their historical behaviors, yet the learning of short sequences is still an open challenge. Recently, data augmentation with pseudo-prior items generated by transformers has drawn considerable attention in improving recommendation in short sequences and addressing the cold-start problem. These methods typically generate pseudo-prior items sequentially in reverse chronological order (i.e., from the future to the past) to obtain longer sequences for subsequent learning. However, the performance can still degrade for very short sequences than for longer ones. In fact, reverse sequential augmentation does not explicitly take into account the forward direction, and so the underlying temporal correlations may not be fully preserved in terms of conditional probabilities. In this paper, we propose a Bidirectional Chronological Augmentation of Transformer (BiCAT) that uses a forward learning constraint in the reverse generative process to capture contextual information more effectively. The forward constraint serves as a bridge between reverse data augmentation and forward recommendation. It can also be used as pretraining to facilitate subsequent learning. Extensive experiments on two public datasets with detailed comparisons to multiple baseline models demonstrate the effectiveness of our method, especially for very short sequences (3 or fewer items).
Abstract:Partial differential equations (PDEs) are concise and understandable representations of domain knowledge, which are essential for deepening our understanding of physical processes and predicting future responses. However, the PDEs of many real-world problems are uncertain, which calls for PDE discovery. We propose the symbolic genetic algorithm (SGA-PDE) to discover open-form PDEs directly from data without prior knowledge about the equation structure. SGA-PDE focuses on the representation and optimization of PDE. Firstly, SGA-PDE uses symbolic mathematics to realize the flexible representation of any given PDE, transforms a PDE into a forest, and converts each function term into a binary tree. Secondly, SGA-PDE adopts a specially designed genetic algorithm to efficiently optimize the binary trees by iteratively updating the tree topology and node attributes. The SGA-PDE is gradient-free, which is a desirable characteristic in PDE discovery since it is difficult to obtain the gradient between the PDE loss and the PDE structure. In the experiment, SGA-PDE not only successfully discovered nonlinear Burgers' equation, Korteweg-de Vries (KdV) equation, and Chafee-Infante equation, but also handled PDEs with fractional structure and compound functions that cannot be solved by conventional PDE discovery methods.