Abstract:We describe a basic correspondence between linear algebraic structures within vector embeddings in artificial neural networks and conditional independence constraints on the probability distributions modeled by these networks. Our framework aims to shed light on the emergence of structural patterns in data representations, a phenomenon widely acknowledged but arguably still lacking a solid formal grounding. Specifically, we introduce a characterization of compositional structures in terms of "interaction decompositions," and we establish necessary and sufficient conditions for the presence of such structures within the representations of a model.
Abstract:We describe a family of architectures to support transductive inference by allowing memory to grow to a finite but a-priori unknown bound while making efficient use of finite resources for inference. Current architectures use such resources to represent data either eidetically over a finite span ("context" in Transformers), or fading over an infinite span (in State Space Models, or SSMs). Recent hybrid architectures have combined eidetic and fading memory, but with limitations that do not allow the designer or the learning process to seamlessly modulate the two, nor to extend the eidetic memory span. We leverage ideas from Stochastic Realization Theory to develop a class of models called B'MOJO to seamlessly combine eidetic and fading memory within an elementary composable module. The overall architecture can be used to implement models that can access short-term eidetic memory "in-context," permanent structural memory "in-weights," fading memory "in-state," and long-term eidetic memory "in-storage" by natively incorporating retrieval from an asynchronously updated memory. We show that Transformers, existing SSMs such as Mamba, and hybrid architectures such as Jamba are special cases of B'MOJO and describe a basic implementation, to be open sourced, that can be stacked and scaled efficiently in hardware. We test B'MOJO on transductive inference tasks, such as associative recall, where it outperforms existing SSMs and Hybrid models; as a baseline, we test ordinary language modeling where B'MOJO achieves perplexity comparable to similarly-sized Transformers and SSMs up to 1.4B parameters, while being up to 10% faster to train. Finally, we show that B'MOJO's ability to modulate eidetic and fading memory results in better inference on longer sequences tested up to 32K tokens, four-fold the length of the longest sequences seen during training.
Abstract:We present Diffusion Soup, a compartmentalization method for Text-to-Image Generation that averages the weights of diffusion models trained on sharded data. By construction, our approach enables training-free continual learning and unlearning with no additional memory or inference costs, since models corresponding to data shards can be added or removed by re-averaging. We show that Diffusion Soup samples from a point in weight space that approximates the geometric mean of the distributions of constituent datasets, which offers anti-memorization guarantees and enables zero-shot style mixing. Empirically, Diffusion Soup outperforms a paragon model trained on the union of all data shards and achieves a 30% improvement in Image Reward (.34 $\to$ .44) on domain sharded data, and a 59% improvement in IR (.37 $\to$ .59) on aesthetic data. In both cases, souping also prevails in TIFA score (respectively, 85.5 $\to$ 86.5 and 85.6 $\to$ 86.8). We demonstrate robust unlearning -- removing any individual domain shard only lowers performance by 1% in IR (.45 $\to$ .44) -- and validate our theoretical insights on anti-memorization using real data. Finally, we showcase Diffusion Soup's ability to blend the distinct styles of models finetuned on different shards, resulting in the zero-shot generation of hybrid styles.
Abstract:Protecting digital identities of human face from various attack vectors is paramount, and face anti-spoofing plays a crucial role in this endeavor. Current approaches primarily focus on detecting spoofing attempts within individual frames to detect presentation attacks. However, the emergence of hyper-realistic generative models capable of real-time operation has heightened the risk of digitally generated attacks. In light of these evolving threats, this paper aims to address two key aspects. First, it sheds light on the vulnerabilities of state-of-the-art face anti-spoofing methods against digital attacks. Second, it presents a comprehensive taxonomy of common threats encountered in face anti-spoofing systems. Through a series of experiments, we demonstrate the limitations of current face anti-spoofing detection techniques and their failure to generalize to novel digital attack scenarios. Notably, the existing models struggle with digital injection attacks including adversarial noise, realistic deepfake attacks, and digital replay attacks. To aid in the design and implementation of robust face anti-spoofing systems resilient to these emerging vulnerabilities, the paper proposes key design principles from model accuracy and robustness to pipeline robustness and even platform robustness. Especially, we suggest to implement the proactive face anti-spoofing system using active sensors to significant reduce the risks for unseen attack vectors and improve the user experience.
Abstract:We propose NeRF-Insert, a NeRF editing framework that allows users to make high-quality local edits with a flexible level of control. Unlike previous work that relied on image-to-image models, we cast scene editing as an in-painting problem, which encourages the global structure of the scene to be preserved. Moreover, while most existing methods use only textual prompts to condition edits, our framework accepts a combination of inputs of different modalities as reference. More precisely, a user may provide a combination of textual and visual inputs including images, CAD models, and binary image masks for specifying a 3D region. We use generic image generation models to in-paint the scene from multiple viewpoints, and lift the local edits to a 3D-consistent NeRF edit. Compared to previous methods, our results show better visual quality and also maintain stronger consistency with the original NeRF.
Abstract:Retrieval Augmented Generation (RAG) is emerging as a flexible and robust technique to adapt models to private users data without training, to handle credit attribution, and to allow efficient machine unlearning at scale. However, RAG techniques for image generation may lead to parts of the retrieved samples being copied in the model's output. To reduce risks of leaking private information contained in the retrieved set, we introduce Copy-Protected generation with Retrieval (CPR), a new method for RAG with strong copyright protection guarantees in a mixed-private setting for diffusion models.CPR allows to condition the output of diffusion models on a set of retrieved images, while also guaranteeing that unique identifiable information about those example is not exposed in the generated outputs. In particular, it does so by sampling from a mixture of public (safe) distribution and private (user) distribution by merging their diffusion scores at inference. We prove that CPR satisfies Near Access Freeness (NAF) which bounds the amount of information an attacker may be able to extract from the generated images. We provide two algorithms for copyright protection, CPR-KL and CPR-Choose. Unlike previously proposed rejection-sampling-based NAF methods, our methods enable efficient copyright-protected sampling with a single run of backward diffusion. We show that our method can be applied to any pre-trained conditional diffusion model, such as Stable Diffusion or unCLIP. In particular, we empirically show that applying CPR on top of unCLIP improves quality and text-to-image alignment of the generated results (81.4 to 83.17 on TIFA benchmark), while enabling credit attribution, copy-right protection, and deterministic, constant time, unlearning.
Abstract:Generative Vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that, however, are not always grounded in the input image. We investigate this phenomenon, usually referred to as "hallucination" and show that it stems from an excessive reliance on the language prior. In particular, we show that as more tokens are generated, the reliance on the visual prompt decreases, and this behavior strongly correlates with the emergence of hallucinations. To reduce hallucinations, we introduce Multi-Modal Mutual-Information Decoding (M3ID), a new sampling method for prompt amplification. M3ID amplifies the influence of the reference image over the language prior, hence favoring the generation of tokens with higher mutual information with the visual prompt. M3ID can be applied to any pre-trained autoregressive VLM at inference time without necessitating further training and with minimal computational overhead. If training is an option, we show that M3ID can be paired with Direct Preference Optimization (DPO) to improve the model's reliance on the prompt image without requiring any labels. Our empirical findings show that our algorithms maintain the fluency and linguistic capabilities of pre-trained VLMs while reducing hallucinations by mitigating visually ungrounded answers. Specifically, for the LLaVA 13B model, M3ID and M3ID+DPO reduce the percentage of hallucinated objects in captioning tasks by 25% and 28%, respectively, and improve the accuracy on VQA benchmarks such as POPE by 21% and 24%.
Abstract:Quantifying the degree of similarity between images is a key copyright issue for image-based machine learning. In legal doctrine however, determining the degree of similarity between works requires subjective analysis, and fact-finders (judges and juries) can demonstrate considerable variability in these subjective judgement calls. Images that are structurally similar can be deemed dissimilar, whereas images of completely different scenes can be deemed similar enough to support a claim of copying. We seek to define and compute a notion of "conceptual similarity" among images that captures high-level relations even among images that do not share repeated elements or visually similar components. The idea is to use a base multi-modal model to generate "explanations" (captions) of visual data at increasing levels of complexity. Then, similarity can be measured by the length of the caption needed to discriminate between the two images: Two highly dissimilar images can be discriminated early in their description, whereas conceptually dissimilar ones will need more detail to be distinguished. We operationalize this definition and show that it correlates with subjective (averaged human evaluation) assessment, and beats existing baselines on both image-to-image and text-to-text similarity benchmarks. Beyond just providing a number, our method also offers interpretability by pointing to the specific level of granularity of the description where the source data are differentiated.
Abstract:We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models.
Abstract:Critical learning periods are periods early in development where temporary sensory deficits can have a permanent effect on behavior and learned representations. Despite the radical differences between biological and artificial networks, critical learning periods have been empirically observed in both systems. This suggests that critical periods may be fundamental to learning and not an accident of biology. Yet, why exactly critical periods emerge in deep networks is still an open question, and in particular it is unclear whether the critical periods observed in both systems depend on particular architectural or optimization details. To isolate the key underlying factors, we focus on deep linear network models, and show that, surprisingly, such networks also display much of the behavior seen in biology and artificial networks, while being amenable to analytical treatment. We show that critical periods depend on the depth of the model and structure of the data distribution. We also show analytically and in simulations that the learning of features is tied to competition between sources. Finally, we extend our analysis to multi-task learning to show that pre-training on certain tasks can damage the transfer performance on new tasks, and show how this depends on the relationship between tasks and the duration of the pre-training stage. To the best of our knowledge, our work provides the first analytically tractable model that sheds light into why critical learning periods emerge in biological and artificial networks.