Abstract:Land cover analysis using hyperspectral images (HSI) remains an open problem due to their low spatial resolution and complex spectral information. Recent studies are primarily dedicated to designing Transformer-based architectures for spatial-spectral long-range dependencies modeling, which is computationally expensive with quadratic complexity. Selective structured state space model (Mamba), which is efficient for modeling long-range dependencies with linear complexity, has recently shown promising progress. However, its potential in hyperspectral image processing that requires handling numerous spectral bands has not yet been explored. In this paper, we innovatively propose S$^2$Mamba, a spatial-spectral state space model for hyperspectral image classification, to excavate spatial-spectral contextual features, resulting in more efficient and accurate land cover analysis. In S$^2$Mamba, two selective structured state space models through different dimensions are designed for feature extraction, one for spatial, and the other for spectral, along with a spatial-spectral mixture gate for optimal fusion. More specifically, S$^2$Mamba first captures spatial contextual relations by interacting each pixel with its adjacent through a Patch Cross Scanning module and then explores semantic information from continuous spectral bands through a Bi-directional Spectral Scanning module. Considering the distinct expertise of the two attributes in homogenous and complicated texture scenes, we realize the Spatial-spectral Mixture Gate by a group of learnable matrices, allowing for the adaptive incorporation of representations learned across different dimensions. Extensive experiments conducted on HSI classification benchmarks demonstrate the superiority and prospect of S$^2$Mamba. The code will be available at: https://github.com/PURE-melo/S2Mamba.
Abstract:Remote sensing object detection (RSOD), one of the most fundamental and challenging tasks in the remote sensing field, has received longstanding attention. In recent years, deep learning techniques have demonstrated robust feature representation capabilities and led to a big leap in the development of RSOD techniques. In this era of rapid technical evolution, this review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods. More than 300 papers are covered in this review. We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision, and systematically review the corresponding methods developed in a hierarchical division manner. We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD. Future research directions are provided for further promoting the research in RSOD.
Abstract:Hyperspectral image change detection (HSI-CD) has emerged as a crucial research area in remote sensing due to its ability to detect subtle changes on the earth's surface. Recently, diffusional denoising probabilistic models (DDPM) have demonstrated remarkable performance in the generative domain. Apart from their image generation capability, the denoising process in diffusion models can comprehensively account for the semantic correlation of spectral-spatial features in HSI, resulting in the retrieval of semantically relevant features in the original image. In this work, we extend the diffusion model's application to the HSI-CD field and propose a novel unsupervised HSI-CD with semantic correlation diffusion model (DiffUCD). Specifically, the semantic correlation diffusion model (SCDM) leverages abundant unlabeled samples and fully accounts for the semantic correlation of spectral-spatial features, which mitigates pseudo change between multi-temporal images arising from inconsistent imaging conditions. Besides, objects with the same semantic concept at the same spatial location may exhibit inconsistent spectral signatures at different times, resulting in pseudo change. To address this problem, we propose a cross-temporal contrastive learning (CTCL) mechanism that aligns the spectral feature representations of unchanged samples. By doing so, the spectral difference invariant features caused by environmental changes can be obtained. Experiments conducted on three publicly available datasets demonstrate that the proposed method outperforms the other state-of-the-art unsupervised methods in terms of Overall Accuracy (OA), Kappa Coefficient (KC), and F1 scores, achieving improvements of approximately 3.95%, 8.13%, and 4.45%, respectively. Notably, our method can achieve comparable results to those fully supervised methods requiring numerous annotated samples.
Abstract:General change detection (GCD) and semantic change detection (SCD) are common methods for identifying changes and distinguishing object categories involved in those changes, respectively. However, the binary changes provided by GCD is often not practical enough, while annotating semantic labels for training SCD models is very expensive. Therefore, there is a novel solution that intuitively dividing changes into three trends (``appear'', ``disappear'' and ``transform'') instead of semantic categories, named it trend change detection (TCD) in this paper. It offers more detailed change information than GCD, while requiring less manual annotation cost than SCD. However, there are limited public data sets with specific trend labels to support TCD application. To address this issue, we propose a softmatch distance which is used to construct a weakly-supervised TCD branch in a simple GCD model, using GCD labels instead of TCD label for training. Furthermore, a strategic approach is presented to successfully explore and extract background information, which is crucial for the weakly-supervised TCD task. The experiment results on four public data sets are highly encouraging, which demonstrates the effectiveness of our proposed model.
Abstract:Weakly supervised object detection (WSOD) is a challenging task, in which image-level labels (e.g., categories of the instances in the whole image) are used to train an object detector. Many existing methods follow the standard multiple instance learning (MIL) paradigm and have achieved promising performance. However, the lack of deterministic information leads to part domination and missing instances. To address these issues, this paper focuses on identifying and fully exploiting the deterministic information in WSOD. We discover that negative instances (i.e. absolutely wrong instances), ignored in most of the previous studies, normally contain valuable deterministic information. Based on this observation, we here propose a negative deterministic information (NDI) based method for improving WSOD, namely NDI-WSOD. Specifically, our method consists of two stages: NDI collecting and exploiting. In the collecting stage, we design several processes to identify and distill the NDI from negative instances online. In the exploiting stage, we utilize the extracted NDI to construct a novel negative contrastive learning mechanism and a negative guided instance selection strategy for dealing with the issues of part domination and missing instances, respectively. Experimental results on several public benchmarks including VOC 2007, VOC 2012 and MS COCO show that our method achieves satisfactory performance.
Abstract:Ship detection in aerial images remains an active yet challenging task due to arbitrary object orientation and complex background from a bird's-eye perspective. Most of the existing methods rely on angular prediction or predefined anchor boxes, making these methods highly sensitive to unstable angular regression and excessive hyper-parameter setting. To address these issues, we replace the angular-based object encoding with an anchor-and-angle-free paradigm, and propose a novel detector deploying a center and four midpoints for encoding each oriented object, namely MidNet. MidNet designs a symmetrical deformable convolution customized for enhancing the midpoints of ships, then the center and midpoints for an identical ship are adaptively matched by predicting corresponding centripetal shift and matching radius. Finally, a concise analytical geometry algorithm is proposed to refine the centers and midpoints step-wisely for building precise oriented bounding boxes. On two public ship detection datasets, HRSC2016 and FGSD2021, MidNet outperforms the state-of-the-art detectors by achieving APs of 90.52% and 86.50%. Additionally, MidNet obtains competitive results in the ship detection of DOTA.
Abstract:Semantic segmentation has been continuously investigated in the last ten years, and majority of the established technologies are based on supervised models. In recent years, image-level weakly supervised semantic segmentation (WSSS), including single- and multi-stage process, has attracted large attention due to data labeling efficiency. In this paper, we propose to embed affinity learning of multi-stage approaches in a single-stage model. To be specific, we introduce an adaptive affinity loss to thoroughly learn the local pairwise affinity. As such, a deep neural network is used to deliver comprehensive semantic information in the training phase, whilst improving the performance of the final prediction module. On the other hand, considering the existence of errors in the pseudo labels, we propose a novel label reassign loss to mitigate over-fitting. Extensive experiments are conducted on the PASCAL VOC 2012 dataset to evaluate the effectiveness of our proposed approach that outperforms other standard single-stage methods and achieves comparable performance against several multi-stage methods.
Abstract:Outlier detection is one of the most important processes taken to create good, reliable data in machine learning. The most methods of outlier detection leverage an auxiliary reconstruction task by assuming that outliers are more difficult to be recovered than normal samples (inliers). However, it is not always true, especially for auto-encoder (AE) based models. They may recover certain outliers even outliers are not in the training data, because they do not constrain the feature learning. Instead, we think outlier detection can be done in the feature space by measuring the feature distance between outliers and inliers. We then propose a framework, MCOD, using a memory module and a contrastive learning module. The memory module constrains the consistency of features, which represent the normal data. The contrastive learning module learns more discriminating features, which boosts the distinction between outliers and inliers. Extensive experiments on four benchmark datasets show that our proposed MCOD achieves a considerable performance and outperforms nine state-of-the-art methods.
Abstract:In this paper, we focus on the challenging multicategory instance segmentation problem in remote sensing images (RSIs), which aims at predicting the categories of all instances and localizing them with pixel-level masks. Although many landmark frameworks have demonstrated promising performance in instance segmentation, the complexity in the background and scale variability instances still remain challenging for instance segmentation of RSIs. To address the above problems, we propose an end-to-end multi-category instance segmentation model, namely Semantic Attention and Scale Complementary Network, which mainly consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB). The SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map and reduce the background noise's interference. To handle the under-segmentation of geospatial instances with large varying scales, we design the SCMB that extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales to sufficiently leverage the multi-scale information. We conduct comprehensive experiments to evaluate the effectiveness of our proposed method on the iSAID dataset and the NWPU Instance Segmentation dataset and achieve promising performance.
Abstract:Brain tumor segmentation is a challenging problem in medical image analysis. The goal of brain tumor segmentation is to generate accurate delineation of brain tumor regions with correctly located masks. In recent years, deep learning methods have shown very promising performance in solving various computer vision problems, such as image classification, object detection and semantic segmentation. A number of deep learning based methods have been applied to brain tumor segmentation and achieved impressive system performance. Considering state-of-the-art technologies and their performance, the purpose of this paper is to provide a comprehensive survey of recently developed deep learning based brain tumor segmentation techniques. The established works included in this survey extensively cover technical aspects such as the strengths and weaknesses of different approaches, pre- and post-processing frameworks, datasets and evaluation metrics. Finally, we conclude this survey by discussing the potential development in future research work.