Abstract:Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications.
Abstract:Social agents powered by large language models (LLMs) can simulate human social behaviors but fall short in handling complex goal-oriented social dialogues. Direct Preference Optimization (DPO) has proven effective in aligning LLM behavior with human preferences across a variety of agent tasks. Existing DPO-based approaches for multi-turn interactions are divided into turn-level and session-level methods. The turn-level method is overly fine-grained, focusing exclusively on individual turns, while session-level methods are too coarse-grained, often introducing training noise. To address these limitations, we propose Segment-Level Direct Preference Optimization (SDPO), which focuses on specific key segments within interactions to optimize multi-turn agent behavior while minimizing training noise. Evaluations on the SOTOPIA benchmark demonstrate that SDPO-tuned agents consistently outperform both existing DPO-based methods and proprietary LLMs like GPT-4o, underscoring SDPO's potential to advance the social intelligence of LLM-based agents. We release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/SDPO.
Abstract:LLM-based agents have emerged as promising tools, which are crafted to fulfill complex tasks by iterative planning and action. However, these agents are susceptible to undesired planning hallucinations when lacking specific knowledge for expertise-intensive tasks. To address this, preliminary attempts are made to enhance planning reliability by incorporating external workflow-related knowledge. Despite the promise, such infused knowledge is mostly disorganized and diverse in formats, lacking rigorous formalization and comprehensive comparisons. Motivated by this, we formalize different formats of workflow knowledge and present FlowBench, the first benchmark for workflow-guided planning. FlowBench covers 51 different scenarios from 6 domains, with knowledge presented in diverse formats. To assess different LLMs on FlowBench, we design a multi-tiered evaluation framework. We evaluate the efficacy of workflow knowledge across multiple formats, and the results indicate that current LLM agents need considerable improvements for satisfactory planning. We hope that our challenging benchmark can pave the way for future agent planning research.
Abstract:Multimodal aspect-based sentiment analysis (MABSA) aims to understand opinions in a granular manner, advancing human-computer interaction and other fields. Traditionally, MABSA methods use a joint prediction approach to identify aspects and sentiments simultaneously. However, we argue that joint models are not always superior. Our analysis shows that joint models struggle to align relevant text tokens with image patches, leading to misalignment and ineffective image utilization. In contrast, a pipeline framework first identifies aspects through MATE (Multimodal Aspect Term Extraction) and then aligns these aspects with image patches for sentiment classification (MASC: Multimodal Aspect-Oriented Sentiment Classification). This method is better suited for multimodal scenarios where effective image use is crucial. We present three key observations: (a) MATE and MASC have different feature requirements, with MATE focusing on token-level features and MASC on sequence-level features; (b) the aspect identified by MATE is crucial for effective image utilization; and (c) images play a trivial role in previous MABSA methods due to high noise. Based on these observations, we propose a pipeline framework that first predicts the aspect and then uses translation-based alignment (TBA) to enhance multimodal semantic consistency for better image utilization. Our method achieves state-of-the-art (SOTA) performance on widely used MABSA datasets Twitter-15 and Twitter-17. This demonstrates the effectiveness of the pipeline approach and its potential to provide valuable insights for future MABSA research. For reproducibility, the code and checkpoint will be released.
Abstract:Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues. This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks. Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs' comprehension in complex dialogue tasks.
Abstract:Recent research has shown that multi-task pre-training greatly improves the model's robustness and transfer ability, which is crucial for building a high-quality dialog system. However, most previous works on multi-task pre-training rely heavily on human-defined input format or prompt, which is not optimal in quality and quantity. In this work, we propose to use Task-based Automatic Prompt generation (TAP) to automatically generate high-quality prompts. Using the high-quality prompts generated, we scale the corpus of the pre-trained conversation model to 122 datasets from 15 dialog-related tasks, resulting in Universal Pre-trained Conversation Model (UniPCM), a powerful foundation model for various conversational tasks and different dialog systems. Extensive experiments have shown that UniPCM is robust to input prompts and capable of various dialog-related tasks. Moreover, UniPCM has strong transfer ability and excels at low resource scenarios, achieving SOTA results on 9 different datasets ranging from task-oriented dialog to open-domain conversation. Furthermore, we are amazed to find that TAP can generate prompts on par with those collected with crowdsourcing. The code is released with the paper.
Abstract:Task-oriented dialogue (TOD) models have great progress in the past few years. However, these studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and more realistic spoken conversation scenarios. While a few small-scale spoken TOD datasets are proposed to address robustness issues, e.g., ASR errors, they fail to identify the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, which consists of 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ incorporates common spoken characteristics such as word-by-word processing and commonsense reasoning. We also present cross-turn slot and reasoning slot detection as new challenges based on the spoken linguistic phenomena. We conduct comprehensive experiments on various models, including text-modal baselines, newly proposed dual-modal baselines and LLMs. The results show the current models still has substantial areas for improvement in spoken conversation, including fine-tuned models and LLMs, i.e., ChatGPT.
Abstract:Recently, speech-text pre-training methods have shown remarkable success in many speech and natural language processing tasks. However, most previous pre-trained models are usually tailored for one or two specific tasks, but fail to conquer a wide range of speech-text tasks. In addition, existing speech-text pre-training methods fail to explore the contextual information within a dialogue to enrich utterance representations. In this paper, we propose Speech-text dialog Pre-training for spoken dialog understanding with ExpliCiT cRoss-Modal Alignment (SPECTRA), which is the first-ever speech-text dialog pre-training model. Concretely, to consider the temporality of speech modality, we design a novel temporal position prediction task to capture the speech-text alignment. This pre-training task aims to predict the start and end time of each textual word in the corresponding speech waveform. In addition, to learn the characteristics of spoken dialogs, we generalize a response selection task from textual dialog pre-training to speech-text dialog pre-training scenarios. Experimental results on four different downstream speech-text tasks demonstrate the superiority of SPECTRA in learning speech-text alignment and multi-turn dialog context.
Abstract:State-of-health (SOH) estimation is a key step in ensuring the safe and reliable operation of batteries. Due to issues such as varying data distribution and sequence length in different cycles, most existing methods require health feature extraction technique, which can be time-consuming and labor-intensive. GRU can well solve this problem due to the simple structure and superior performance, receiving widespread attentions. However, redundant information still exists within the network and impacts the accuracy of SOH estimation. To address this issue, a new GRU network based on Hilbert-Schmidt Independence Criterion (GRU-HSIC) is proposed. First, a zero masking network is used to transform all battery data measured with varying lengths every cycle into sequences of the same length, while still retaining information about the original data size in each cycle. Second, the Hilbert-Schmidt Independence Criterion (HSIC) bottleneck, which evolved from Information Bottleneck (IB) theory, is extended to GRU to compress the information from hidden layers. To evaluate the proposed method, we conducted experiments on datasets from the Center for Advanced Life Cycle Engineering (CALCE) of the University of Maryland and NASA Ames Prognostics Center of Excellence. Experimental results demonstrate that our model achieves higher accuracy than other recurrent models.
Abstract:Multilingual pre-trained models have achieved remarkable transfer performance by pre-trained on rich kinds of languages. Most of the models such as mBERT are pre-trained on unlabeled corpora. The static and contextual embeddings from the models could not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better. We propose a pre-training task named Alignment Language Model (AlignLM), which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction. We evaluate our method on multilingual machine reading comprehension and natural language interface tasks. The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.