Abstract:Knowledge editing has emerged as an efficient approach for updating the knowledge of large language models (LLMs), attracting increasing attention in recent research. However, there is a notable lack of effective measures to prevent the malicious misuse of this technology, which could lead to harmful edits in LLMs. These malicious modifications have the potential to cause LLMs to generate toxic content, misleading users into inappropriate actions. To address this issue, we introduce a novel task, \textbf{K}nowledge \textbf{E}diting \textbf{T}ype \textbf{I}dentification (KETI), aimed at identifying malicious edits in LLMs. As part of this task, we present KETIBench, a benchmark that includes five types of malicious updates and one type of benign update. Furthermore, we develop four classical classification models and three BERT-based models as baseline identifiers for both open-source and closed-source LLMs. Our experimental results, spanning 42 trials involving two models and three knowledge editing methods, demonstrate that all seven baseline identifiers achieve decent identification performance, highlighting the feasibility of identifying malicious edits in LLMs. Additional analyses reveal that the performance of the identifiers is independent of the efficacy of the knowledge editing methods and exhibits cross-domain generalization, enabling the identification of edits from unknown sources. All data and code are available in https://github.com/xpq-tech/KETI. Warning: This paper contains examples of toxic text.
Abstract:Multimodal aspect-based sentiment analysis (MABSA) aims to understand opinions in a granular manner, advancing human-computer interaction and other fields. Traditionally, MABSA methods use a joint prediction approach to identify aspects and sentiments simultaneously. However, we argue that joint models are not always superior. Our analysis shows that joint models struggle to align relevant text tokens with image patches, leading to misalignment and ineffective image utilization. In contrast, a pipeline framework first identifies aspects through MATE (Multimodal Aspect Term Extraction) and then aligns these aspects with image patches for sentiment classification (MASC: Multimodal Aspect-Oriented Sentiment Classification). This method is better suited for multimodal scenarios where effective image use is crucial. We present three key observations: (a) MATE and MASC have different feature requirements, with MATE focusing on token-level features and MASC on sequence-level features; (b) the aspect identified by MATE is crucial for effective image utilization; and (c) images play a trivial role in previous MABSA methods due to high noise. Based on these observations, we propose a pipeline framework that first predicts the aspect and then uses translation-based alignment (TBA) to enhance multimodal semantic consistency for better image utilization. Our method achieves state-of-the-art (SOTA) performance on widely used MABSA datasets Twitter-15 and Twitter-17. This demonstrates the effectiveness of the pipeline approach and its potential to provide valuable insights for future MABSA research. For reproducibility, the code and checkpoint will be released.
Abstract:Automatically condensing multiple topic-related scientific papers into a succinct and concise summary is referred to as Multi-Document Scientific Summarization (MDSS). Currently, while commonly used abstractive MDSS methods can generate flexible and coherent summaries, the difficulty in handling global information and the lack of guidance during decoding still make it challenging to generate better summaries. To alleviate these two shortcomings, this paper introduces summary candidates into MDSS, utilizing the global information of the document set and additional guidance from the summary candidates to guide the decoding process. Our insights are twofold: Firstly, summary candidates can provide instructive information from both positive and negative perspectives, and secondly, selecting higher-quality candidates from multiple options contributes to producing better summaries. Drawing on the insights, we propose a summary candidates fusion framework -- Disentangling Instructive information from Ranked candidates (DIR) for MDSS. Specifically, DIR first uses a specialized pairwise comparison method towards multiple candidates to pick out those of higher quality. Then DIR disentangles the instructive information of summary candidates into positive and negative latent variables with Conditional Variational Autoencoder. These variables are further incorporated into the decoder to guide generation. We evaluate our approach with three different types of Transformer-based models and three different types of candidates, and consistently observe noticeable performance improvements according to automatic and human evaluation. More analyses further demonstrate the effectiveness of our model in handling global information and enhancing decoding controllability.
Abstract:Multimodal entity linking (MEL) aims to utilize multimodal information (usually textual and visual information) to link ambiguous mentions to unambiguous entities in knowledge base. Current methods facing main issues: (1)treating the entire image as input may contain redundant information. (2)the insufficient utilization of entity-related information, such as attributes in images. (3)semantic inconsistency between the entity in knowledge base and its representation. To this end, we propose DWE+ for multimodal entity linking. DWE+ could capture finer semantics and dynamically maintain semantic consistency with entities. This is achieved by three aspects: (a)we introduce a method for extracting fine-grained image features by partitioning the image into multiple local objects. Then, hierarchical contrastive learning is used to further align semantics between coarse-grained information(text and image) and fine-grained (mention and visual objects). (b)we explore ways to extract visual attributes from images to enhance fusion feature such as facial features and identity. (c)we leverage Wikipedia and ChatGPT to capture the entity representation, achieving semantic enrichment from both static and dynamic perspectives, which better reflects the real-world entity semantics. Experiments on Wikimel, Richpedia, and Wikidiverse datasets demonstrate the effectiveness of DWE+ in improving MEL performance. Specifically, we optimize these datasets and achieve state-of-the-art performance on the enhanced datasets. The code and enhanced datasets are released on https://github.com/season1blue/DWET
Abstract:Citing comprehensively and appropriately has become a challenging task with the explosive growth of scientific publications. Current citation recommendation systems aim to recommend a list of scientific papers for a given text context or a draft paper. However, none of the existing work focuses on already included citations of full papers, which are imperfect and still have much room for improvement. In the scenario of peer reviewing, it is a common phenomenon that submissions are identified as missing vital citations by reviewers. This may lead to a negative impact on the credibility and validity of the research presented. To help improve citations of full papers, we first define a novel task of Recommending Missed Citations Identified by Reviewers (RMC) and construct a corresponding expert-labeled dataset called CitationR. We conduct an extensive evaluation of several state-of-the-art methods on CitationR. Furthermore, we propose a new framework RMCNet with an Attentive Reference Encoder module mining the relevance between papers, already-made citations, and missed citations. Empirical results prove that RMC is challenging, with the proposed architecture outperforming previous methods in all metrics. We release our dataset and benchmark models to motivate future research on this challenging new task.
Abstract:Model editing has recently gained widespread attention. Current model editing methods primarily involve modifying model parameters or adding additional modules to the existing model. However, the former causes irreversible damage to LLMs, while the latter incurs additional inference overhead and fuzzy vector matching is not always reliable. To address these issues, we propose an expandable Subject Word Embedding Altering (SWEA) framework, which modifies the representation of subjects and achieve the goal of editing knowledge during the inference stage. SWEA uses precise key matching outside the model and performs reliable subject word embedding altering, thus protecting the original weights of the model without increasing inference overhead. We then propose optimizing then suppressing fusion method, which first optimizes the embedding vector for the editing target and then suppresses the Knowledge Embedding Dimension (KED) to obtain the final fused embedding. We thus propose SWEAOS method for editing factual knowledge in LLMs. We demonstrate the state-of-the-art performance of SWEAOS on the COUNTERFACT and zsRE datasets. To further validate the reasoning ability of SWEAOS in editing knowledge, we evaluate it on the more complex RIPPLEEDITS benchmark. The results on two subdatasets demonstrate that our SWEAOS possesses state-of-the-art reasoning ability.
Abstract:Multimodal Entity Linking (MEL) aims at linking ambiguous mentions with multimodal information to entity in Knowledge Graph (KG) such as Wikipedia, which plays a key role in many applications. However, existing methods suffer from shortcomings, including modality impurity such as noise in raw image and ambiguous textual entity representation, which puts obstacles to MEL. We formulate multimodal entity linking as a neural text matching problem where each multimodal information (text and image) is treated as a query, and the model learns the mapping from each query to the relevant entity from candidate entities. This paper introduces a dual-way enhanced (DWE) framework for MEL: (1) our model refines queries with multimodal data and addresses semantic gaps using cross-modal enhancers between text and image information. Besides, DWE innovatively leverages fine-grained image attributes, including facial characteristic and scene feature, to enhance and refine visual features. (2)By using Wikipedia descriptions, DWE enriches entity semantics and obtains more comprehensive textual representation, which reduces between textual representation and the entities in KG. Extensive experiments on three public benchmarks demonstrate that our method achieves state-of-the-art (SOTA) performance, indicating the superiority of our model. The code is released on https://github.com/season1blue/DWE
Abstract:This review paper explores Multimodal Large Language Models (MLLMs), which integrate Large Language Models (LLMs) like GPT-4 to handle multimodal data such as text and vision. MLLMs demonstrate capabilities like generating image narratives and answering image-based questions, bridging the gap towards real-world human-computer interactions and hinting at a potential pathway to artificial general intelligence. However, MLLMs still face challenges in processing the semantic gap in multimodality, which may lead to erroneous generation, posing potential risks to society. Choosing the appropriate modality alignment method is crucial, as improper methods might require more parameters with limited performance improvement. This paper aims to explore modality alignment methods for LLMs and their existing capabilities. Implementing modality alignment allows LLMs to address environmental issues and enhance accessibility. The study surveys existing modal alignment methods in MLLMs into four groups: (1) Multimodal Converters that change data into something LLMs can understand; (2) Multimodal Perceivers to improve how LLMs perceive different types of data; (3) Tools Assistance for changing data into one common format, usually text; and (4) Data-Driven methods that teach LLMs to understand specific types of data in a dataset. This field is still in a phase of exploration and experimentation, and we will organize and update various existing research methods for multimodal information alignment.
Abstract:Model editing techniques modify a minor proportion of knowledge in Large Language Models (LLMs) at a relatively low cost, which have demonstrated notable success. Existing methods assume Transformer Layer (TL) hidden states are values of key-value memories of the Feed-Forward Network (FFN). They usually optimize the TL hidden states to memorize target knowledge and use it to update the weights of the FFN in LLMs. However, the information flow of TL hidden states comes from three parts: Multi-Head Self-Attention (MHSA), FFN, and residual connections. Existing methods neglect the fact that the TL hidden states contains information not specifically required for FFN. Consequently, the performance of model editing decreases. To achieve more precise model editing, we analyze hidden states of MHSA and FFN, finding that MHSA encodes certain general knowledge extraction patterns. This implies that MHSA weights do not require updating when new knowledge is introduced. Based on above findings, we introduce PMET, which simultaneously optimizes Transformer Component (TC, namely MHSA and FFN) hidden states, while only using the optimized TC hidden states of FFN to precisely update FFN weights. Our experiments demonstrate that PMET exhibits state-of-the-art performance on both the COUNTERFACT and zsRE datasets. Our ablation experiments substantiate the effectiveness of our enhancements, further reinforcing the finding that the MHSA encodes certain general knowledge extraction patterns and indicating its storage of a small amount of factual knowledge. Our code is available at https://github.com/xpq-tech/PMET.git.
Abstract:Text-to-SQL aims at generating SQL queries for the given natural language questions and thus helping users to query databases. Prompt learning with large language models (LLMs) has emerged as a recent approach, which designs prompts to lead LLMs to understand the input question and generate the corresponding SQL. However, it faces challenges with strict SQL syntax requirements. Existing work prompts the LLMs with a list of demonstration examples (i.e. question-SQL pairs) to generate SQL, but the fixed prompts can hardly handle the scenario where the semantic gap between the retrieved demonstration and the input question is large. In this paper, we propose a retrieval-augmented prompting method for a LLM-based Text-to-SQL framework, involving sample-aware prompting and a dynamic revision chain. Our approach incorporates sample-aware demonstrations, which include the composition of SQL operators and fine-grained information related to the given question. To retrieve questions sharing similar intents with input questions, we propose two strategies for assisting retrieval. Firstly, we leverage LLMs to simplify the original questions, unifying the syntax and thereby clarifying the users' intentions. To generate executable and accurate SQLs without human intervention, we design a dynamic revision chain which iteratively adapts fine-grained feedback from the previously generated SQL. Experimental results on three Text-to-SQL benchmarks demonstrate the superiority of our method over strong baseline models.