Abstract:Long-term stability stands as a crucial requirement in data-driven medium-range global weather forecasting. Spectral bias is recognized as the primary contributor to instabilities, as data-driven methods difficult to learn small-scale dynamics. In this paper, we reveal that the universal mechanism for these instabilities is not only related to spectral bias but also to distortions brought by processing spherical data using conventional convolution. These distortions lead to a rapid amplification of errors over successive long-term iterations, resulting in a significant decline in forecast accuracy. To address this issue, a universal neural operator called the Spherical Harmonic Neural Operator (SHNO) is introduced to improve long-term iterative forecasts. SHNO uses the spherical harmonic basis to mitigate distortions for spherical data and uses gated residual spectral attention (GRSA) to correct spectral bias caused by spurious correlations across different scales. The effectiveness and merit of the proposed method have been validated through its application for spherical Shallow Water Equations (SWEs) and medium-range global weather forecasting. Our findings highlight the benefits and potential of SHNO to improve the accuracy of long-term prediction.
Abstract:Model editing has recently gained widespread attention. Current model editing methods primarily involve modifying model parameters or adding additional modules to the existing model. However, the former causes irreversible damage to LLMs, while the latter incurs additional inference overhead and fuzzy vector matching is not always reliable. To address these issues, we propose an expandable Subject Word Embedding Altering (SWEA) framework, which modifies the representation of subjects and achieve the goal of editing knowledge during the inference stage. SWEA uses precise key matching outside the model and performs reliable subject word embedding altering, thus protecting the original weights of the model without increasing inference overhead. We then propose optimizing then suppressing fusion method, which first optimizes the embedding vector for the editing target and then suppresses the Knowledge Embedding Dimension (KED) to obtain the final fused embedding. We thus propose SWEAOS method for editing factual knowledge in LLMs. We demonstrate the state-of-the-art performance of SWEAOS on the COUNTERFACT and zsRE datasets. To further validate the reasoning ability of SWEAOS in editing knowledge, we evaluate it on the more complex RIPPLEEDITS benchmark. The results on two subdatasets demonstrate that our SWEAOS possesses state-of-the-art reasoning ability.
Abstract:Predicting user response probabilities is vital for ad ranking and bidding. We hope that predictive models can produce accurate probabilistic predictions that reflect true likelihoods. Calibration techniques aims to post-process model predictions to posterior probabilities. Field-level calibration -- which performs calibration w.r.t. to a specific field value -- is fine-grained and more practical. In this paper we propose a doubly-adaptive approach AdaCalib. It learns an isotonic function family to calibrate model predictions with the guidance of posterior statistics, and field-adaptive mechanisms are designed to ensure that the posterior is appropriate for the field value to be calibrated. Experiments verify that AdaCalib achieves significant improvement on calibration performance. It has been deployed online and beats previous approach.
Abstract:In online advertising, conventional post-click conversion rate (CVR) estimation models are trained using clicked samples. However, during online serving the models need to estimate for all impression ads, leading to the sample selection bias (SSB) issue. Intuitively, providing reliable supervision signals for unclicked ads is a feasible way to alleviate the SSB issue. This paper proposes an uncertainty-regularized knowledge distillation (UKD) framework to debias CVR estimation via distilling knowledge from unclicked ads. A teacher model learns click-adaptive representations and produces pseudo-conversion labels on unclicked ads as supervision signals. Then a student model is trained on both clicked and unclicked ads with knowledge distillation, performing uncertainty modeling to alleviate the inherent noise in pseudo-labels. Experiments on billion-scale datasets show that UKD outperforms previous debiasing methods. Online results verify that UKD achieves significant improvements.