Traditional adversarial attacks typically produce adversarial examples under norm-constrained conditions, whereas unrestricted adversarial examples are free-form with semantically meaningful perturbations. Current unrestricted adversarial impersonation attacks exhibit limited control over adversarial face attributes and often suffer from low transferability. In this paper, we propose a novel Text Controlled Attribute Attack (TCA$^2$) to generate photorealistic adversarial impersonation faces guided by natural language. Specifically, the category-level personal softmax vector is employed to precisely guide the impersonation attacks. Additionally, we propose both data and model augmentation strategies to achieve transferable attacks on unknown target models. Finally, a generative model, \textit{i.e}, Style-GAN, is utilized to synthesize impersonated faces with desired attributes. Extensive experiments on two high-resolution face recognition datasets validate that our TCA$^2$ method can generate natural text-guided adversarial impersonation faces with high transferability. We also evaluate our method on real-world face recognition systems, \textit{i.e}, Face++ and Aliyun, further demonstrating the practical potential of our approach.